Loading…
Thermo-modified native black poplar (Populus nigra L.) wood as an insulation material
Extensive research projects have been carried out on thermal modification of wood material, yet thermal properties of thermally modified poplar wood have not been comprehensively investigated. Black poplar (Populus nigra L.) is a Eurasian species native to Italy which is rarely used for the producti...
Saved in:
Published in: | IForest (Viterbo) 2021-06, Vol.14 (3), p.268-273 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Extensive research projects have been carried out on thermal modification of wood material, yet thermal properties of thermally modified poplar wood have not been comprehensively investigated. Black poplar (Populus nigra L.) is a Eurasian species native to Italy which is rarely used for the production of high-performance products, though it is one of the least expensive hardwoods on the market. To explore alternative applications of poplar wood such as building facade or fire resistance materials, reliable data of thermal behaviour of thermally modified wood at high temperatures are needed. In this work, the thermal behaviour of native black poplar wood after thermal modification at different temperatures (180 °C, 200 °C and 220 °C) was analyzed. Thermal conductivity, thermal diffusivity and porosity were measured on poplar wood boards, as well as mass loss and wood color changes after heat treatment were quantified. Thermal conductivity of wood samples showed significant changes after treatment at 200 and 220 °C, but not at 180 °C. Wood porosity showed significant differences with the control when the samples were modified at a temperature of 220 °C. Increasing color differences were observed in wood samples by increasing the thermal modification temperature. Also, the mass loss of wood samples increased and equilibrium moisture content significantly dropped down after thermal modification. Our results showed that the use of thermally-modified black poplar wood could be considered as a viable alternative to chemically treated wood products for specific applications where high insulation is needed, such as saunas or windows, and for façades elements. |
---|---|
ISSN: | 1971-7458 1971-7458 |
DOI: | 10.3832/ifor3710-014 |