Loading…
Ultra-fast perovskite electro-optic modulator and multi-band transmission up to 300 Gbit s−1
The gap between the performance of optoelectronic components and the demands of fiber-optic communications has narrowed significantly in recent decades. Yet, the expansion of data communications traffic remains substantial, with fiber-link speeds increases anticipated in the near future. Here, we de...
Saved in:
Published in: | Communications materials 2024-07, Vol.5 (1), p.114-8, Article 114 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The gap between the performance of optoelectronic components and the demands of fiber-optic communications has narrowed significantly in recent decades. Yet, the expansion of data communications traffic remains substantial, with fiber-link speeds increases anticipated in the near future. Here, we demonstrate an ultra-high-speed electro-optic waveguide modulator constructed using a thin film of lanthanum-modified lead zirconate titanate with a ferroelectric phase exhibiting a strong Pockels effect. The modulator has a wide optical window; thus, the modulation was demonstrated for 1550 and 1310 nm wavelengths. This device showed electro-optical intensity signaling with line rates of 172 Gbit s
−1
, in conjunction with on–off keying modulation; this performance could be increased to 304 Gbit s
−1
using four-level pulse modulation. The signaling performance of this modulator was found to be robust, with stable performance at temperatures as high as 100 °C. This technology is expected to have applications in a wide range of classical optoelectronic devices and in quantum science and technology.
Advanced fiber-optic communications rely on electro-optic materials with suitable properties. Here a perovskite oxide, lanthanum-modified lead zirconate titanate, is used to fabricate a waveguide modulator with line rates as high as 304 Gbit/s using four-level pulse modulation. |
---|---|
ISSN: | 2662-4443 2662-4443 |
DOI: | 10.1038/s43246-024-00558-5 |