Loading…

Numerical Investigation of the Hydrodynamics of Changing Fin Positions within a 4-Fin Surfboard Configuration

Most sports like surfing are highly developed. It is necessary to tease the last percentages out of the competitors and equipment—in the case of surfing the surfboard-fin-system—to win competitions or championships. In this computational investigation, a parameter study of the positioning of the two...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-02, Vol.10 (3), p.816
Main Authors: Falk, Sebastian, Kniesburges, Stefan, Janka, Rolf, O’Keefe, Tom, Grosso, Roberto, Döllinger, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Most sports like surfing are highly developed. It is necessary to tease the last percentages out of the competitors and equipment—in the case of surfing the surfboard-fin-system—to win competitions or championships. In this computational investigation, a parameter study of the positioning of the two rear fins within a 4-fin configuration with fixed front fins on a surfboard is executed to find appropriate fin positions for specific surf situations. Four different inflow velocities are investigated. The RANS and URANS models combined with the SST k − ω turbulence model, which is available within the computational fluid dynamics (CFD) package STAR-CCM+, are used to simulate the flow field around the fins for angles of attack (AoA) between 0° and 45°. The simulation results show that shifting the rear fins toward the longitudinal axis of the surfboard lowers the maximum lift. Surfboards with 4-fin configurations are slower in nearly the whole range of AoA due to a higher drag force but produce a higher lift force compared to the 3-fin configuration. The lift and drag forces increase significantly with increasing inflow velocity. This study shows a significant influence of the rear fin positioning and the inflow velocity on lift and drag performance characteristics.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10030816