Loading…
Machine learning for activity-based road transportation emissions estimation
Measuring and attributing greenhouse gas (GHG) emissions remains a challenging problem as the world strives toward meeting emissions reductions targets. As a significant portion of total global emissions, the road transportation sector represents an enormous challenge for estimating and tracking emi...
Saved in:
Published in: | Environmental Data Science 2023, Vol.2, Article e38 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Measuring and attributing greenhouse gas (GHG) emissions remains a challenging problem as the world strives toward meeting emissions reductions targets. As a significant portion of total global emissions, the road transportation sector represents an enormous challenge for estimating and tracking emissions at a global scale. To meet this challenge, we have developed a hybrid approach for estimating road transportation emissions that combines the strengths of machine learning and satellite imagery with localized emissions factors data to create an accurate, globally scalable, and easily configurable GHG monitoring framework. |
---|---|
ISSN: | 2634-4602 2634-4602 |
DOI: | 10.1017/eds.2023.32 |