Loading…
Healing cracks in additively manufactured NiTi shape memory alloys
The pursuit of enhancing NiTi superelasticity through laser powder bed fusion (L-PBF) and [001] texture creation poses a challenge due to increased susceptibility to hot cracking in the resulting microstructure with columnar grains. This limitation restricts NiTi's application and contributes t...
Saved in:
Published in: | Virtual and physical prototyping 2023-12, Vol.18 (1) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The pursuit of enhancing NiTi superelasticity through laser powder bed fusion (L-PBF) and [001] texture creation poses a challenge due to increased susceptibility to hot cracking in the resulting microstructure with columnar grains. This limitation restricts NiTi's application and contributes to material waste. To overcome this, we introduce a pioneering approach: utilising spark plasma sintering (SPS) to heal directional cracks in [001] textured L-PBF NiTi shape memory alloy. Diffusion bonding and oxygen utilisation for Ti2NiOx formation was found to successfully heal the cracks. SPS enhances mechanical properties, superelasticity at higher temperatures, and two-way shape memory strain during thermomechanical cycling. This work provides an alternative solution for healing cracks in L-PBF parts, enabling the sustainable reuse of cracked materials. By implementing SPS, this approach effectively addresses hot cracking limitations, expanding the application potential of L-PBF NiTi parts while improving their functional and mechanical properties. |
---|---|
ISSN: | 1745-2759 1745-2767 |
DOI: | 10.1080/17452759.2023.2246437 |