Loading…
Positive solutions of the periodic problems for quasilinear difference equation with sign-changing weight
We show the existence of positive solutions of the periodic problem of the quasilinear difference equation { − ∇ [ ϕ ( Δ u k ) ] + q k u k = λ g k f ( u k ) , k ∈ T , u 0 = u T , u 1 = u T + 1 , where T = { 1 , 2 , … , T } with integer T ≥ 2 , ϕ ( s ) = s / 1 − s 2 , q = ( q 1 , … , q T ) ∈ R T , q...
Saved in:
Published in: | Advances in difference equations 2018-10, Vol.2018 (1), p.1-13, Article 393 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show the existence of positive solutions of the periodic problem of the quasilinear difference equation
{
−
∇
[
ϕ
(
Δ
u
k
)
]
+
q
k
u
k
=
λ
g
k
f
(
u
k
)
,
k
∈
T
,
u
0
=
u
T
,
u
1
=
u
T
+
1
,
where
T
=
{
1
,
2
,
…
,
T
}
with integer
T
≥
2
,
ϕ
(
s
)
=
s
/
1
−
s
2
,
q
=
(
q
1
,
…
,
q
T
)
∈
R
T
,
q
k
≥
0
for all
k
∈
T
and
q
k
0
>
0
for some
k
0
∈
T
,
g
=
(
g
1
,
…
,
g
T
)
∈
R
T
changes the sign on
T
,
f
is a continuous function, and
λ
∈
R
is a parameter. The proofs of the main results are based upon bifurcation techniques. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-018-1856-8 |