Loading…

Positive solutions of the periodic problems for quasilinear difference equation with sign-changing weight

We show the existence of positive solutions of the periodic problem of the quasilinear difference equation { − ∇ [ ϕ ( Δ u k ) ] + q k u k = λ g k f ( u k ) , k ∈ T , u 0 = u T , u 1 = u T + 1 , where T = { 1 , 2 , … , T } with integer T ≥ 2 , ϕ ( s ) = s / 1 − s 2 , q = ( q 1 , … , q T ) ∈ R T , q...

Full description

Saved in:
Bibliographic Details
Published in:Advances in difference equations 2018-10, Vol.2018 (1), p.1-13, Article 393
Main Authors: Xu, Man, Ma, Ruyun, He, Zhiqian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show the existence of positive solutions of the periodic problem of the quasilinear difference equation { − ∇ [ ϕ ( Δ u k ) ] + q k u k = λ g k f ( u k ) , k ∈ T , u 0 = u T , u 1 = u T + 1 , where T = { 1 , 2 , … , T } with integer T ≥ 2 , ϕ ( s ) = s / 1 − s 2 , q = ( q 1 , … , q T ) ∈ R T , q k ≥ 0 for all k ∈ T and q k 0 > 0 for some k 0 ∈ T , g = ( g 1 , … , g T ) ∈ R T changes the sign on T , f is a continuous function, and λ ∈ R is a parameter. The proofs of the main results are based upon bifurcation techniques.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-018-1856-8