Loading…

Polylinear Transformation Method for Solving Systems of Logical Equations

In connection with applications, the solution of a system of logical equations plays an important role in computational mathematics and in many other areas. As a result, many new directions and algorithms for solving systems of logical equations are being developed. One of these directions is transf...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-03, Vol.10 (6), p.918
Main Authors: Barotov, Dostonjon Numonjonovich, Barotov, Ruziboy Numonjonovich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In connection with applications, the solution of a system of logical equations plays an important role in computational mathematics and in many other areas. As a result, many new directions and algorithms for solving systems of logical equations are being developed. One of these directions is transformation into the real continuous domain. The real continuous domain is a richer domain to work with because it features many algorithms, which are well designed. In this study, firstly, we transformed any system of logical equations in the unit n-dimensional cube Kn into a system of polylinear–polynomial equations in a mathematically constructive way. Secondly, we proved that if we slightly modify the system of logical equations, namely, add no more than one special equation to the system, then the resulting system of logical equations and the corresponding system of polylinear–polynomial equations in Kn+1 is equivalent. The paper proposes an algorithm and proves its correctness. Based on these results, further research plans are developed to adapt the proposed method.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10060918