Loading…
Polylinear Transformation Method for Solving Systems of Logical Equations
In connection with applications, the solution of a system of logical equations plays an important role in computational mathematics and in many other areas. As a result, many new directions and algorithms for solving systems of logical equations are being developed. One of these directions is transf...
Saved in:
Published in: | Mathematics (Basel) 2022-03, Vol.10 (6), p.918 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In connection with applications, the solution of a system of logical equations plays an important role in computational mathematics and in many other areas. As a result, many new directions and algorithms for solving systems of logical equations are being developed. One of these directions is transformation into the real continuous domain. The real continuous domain is a richer domain to work with because it features many algorithms, which are well designed. In this study, firstly, we transformed any system of logical equations in the unit n-dimensional cube Kn into a system of polylinear–polynomial equations in a mathematically constructive way. Secondly, we proved that if we slightly modify the system of logical equations, namely, add no more than one special equation to the system, then the resulting system of logical equations and the corresponding system of polylinear–polynomial equations in Kn+1 is equivalent. The paper proposes an algorithm and proves its correctness. Based on these results, further research plans are developed to adapt the proposed method. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10060918 |