Loading…

Attention-Based Multi-Level Feature Fusion for Object Detection in Remote Sensing Images

We study the problem of object detection in remote sensing images. As a simple but effective feature extractor, Feature Pyramid Network (FPN) has been widely used in several generic vision tasks. However, it still faces some challenges when used for remote sensing object detection, as the objects in...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-08, Vol.14 (15), p.3735
Main Authors: Dong, Xiaohu, Qin, Yao, Gao, Yinghui, Fu, Ruigang, Liu, Songlin, Ye, Yuanxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the problem of object detection in remote sensing images. As a simple but effective feature extractor, Feature Pyramid Network (FPN) has been widely used in several generic vision tasks. However, it still faces some challenges when used for remote sensing object detection, as the objects in remote sensing images usually exhibit variable shapes, orientations, and sizes. To this end, we propose a dedicated object detector based on the FPN architecture to achieve accurate object detection in remote sensing images. Specifically, considering the variable shapes and orientations of remote sensing objects, we first replace the original lateral connections of FPN with Deformable Convolution Lateral Connection Modules (DCLCMs), each of which includes a 3Ă—3 deformable convolution to generate feature maps with deformable receptive fields. Additionally, we further introduce several Attention-based Multi-Level Feature Fusion Modules (A-MLFFMs) to integrate the multi-level outputs of FPN adaptively, further enabling multi-scale object detection. Extensive experimental results on the DIOR dataset demonstrated the state-of-the-art performance achieved by the proposed method, with the highest mean Average Precision (mAP) of 73.6%.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14153735