Loading…
Reliability Properties of the NDL Family of Discrete Distributions with Its Inference
The natural discrete Lindley (NDL) distribution is an intuitive idea that uses discrete analogs to well-known continuous distributions rather than using any of the published discretization techniques. The NDL is a flexible extension of both the geometric and the negative binomial distributions. In t...
Saved in:
Published in: | Mathematics (Basel) 2021-05, Vol.9 (10), p.1139 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The natural discrete Lindley (NDL) distribution is an intuitive idea that uses discrete analogs to well-known continuous distributions rather than using any of the published discretization techniques. The NDL is a flexible extension of both the geometric and the negative binomial distributions. In the present article, we further investigate new results of value in the areas of both theoretical and applied reliability. To be specific, several closure properties of the NDL are proved. Among the results, sufficient conditions that maintain the preservation properties under useful partial orderings, convolution, and random sum of random variables are introduced. Eight different methods of estimation, including the maximum likelihood, least squares, weighted least squares, Cramér–von Mises, the maximum product of spacing, Anderson–Darling, right-tail Anderson–Darling, and percentiles, have been used to estimate the parameter of interest. The performance of these estimators has been evaluated through extensive simulation. We have also demonstrated two applications of NDL in modeling real-life problems, including count data. It is worth noting that almost all the methods have resulted in very satisfactory estimates on both simulated and real-world data. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math9101139 |