Loading…
Symmetric Difference Operators Derived from Overlap and Grouping Functions
This paper introduces the concept of symmetric difference operators in terms of overlap and grouping functions, for which the associativity property is not strongly required. These symmetric difference operators are weaker than symmetric difference operators in terms of positive and continuous t-nor...
Saved in:
Published in: | Symmetry (Basel) 2023-08, Vol.15 (8), p.1569 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper introduces the concept of symmetric difference operators in terms of overlap and grouping functions, for which the associativity property is not strongly required. These symmetric difference operators are weaker than symmetric difference operators in terms of positive and continuous t-norms and t-conorms. Therefore, in the sense of the characters of mathematics, these operators do not necessarily satisfy certain properties, such as associativity and the neutrality principle. We analyze several related important properties based on two models of symmetric differences. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym15081569 |