Loading…
Adaptive Fault-Tolerant Attitude-Tracking Control of Spacecraft With Quantized Control Torque
In this article, the problem of fault-tolerant attitude-tracking control of spacecraft with quantized control torque is addressed. Actuator faults/failures, an uncertain inertia matrix and unknown disturbances are considered in the attitude controller design of the spacecraft. A dynamical quantizati...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.226653-226661 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, the problem of fault-tolerant attitude-tracking control of spacecraft with quantized control torque is addressed. Actuator faults/failures, an uncertain inertia matrix and unknown disturbances are considered in the attitude controller design of the spacecraft. A dynamical quantization strategy is developed to quantize the signals of the control torque, which can reduce the data transmission rate. An adaptive fault-tolerant controller based on sliding mode techniques is constructed to address the impacts of the actuator faults/failures, quantization errors, inertia matrix uncertainties and unknown disturbances. The developed control strategy with a quantizer can ensure that the entire closed-loop system is asymptotically convergent and achieves satisfactory attitude-tracking performance. Finally, simulation results are provided to show the effectiveness of the proposed method. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3045017 |