Loading…

Nonadditive Effects on Decomposition of a Mixture of Rice Straw and Groundnut Stover Applied to a Sandy Soil

Rice straw is an abundant resource, but its use as a sandy soil amendment does not increase soil organic matter (SOM) accumulation. Our study aimed to determine the altered decomposition processes that result from mixing rice straw (RS) (low N, high cellulose) with groundnut stover (GN) (high N) rel...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2021-05, Vol.11 (6), p.1030
Main Authors: Pingthaisong, Wimonsiri, Vityakon, Patma
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rice straw is an abundant resource, but its use as a sandy soil amendment does not increase soil organic matter (SOM) accumulation. Our study aimed to determine the altered decomposition processes that result from mixing rice straw (RS) (low N, high cellulose) with groundnut stover (GN) (high N) relative to applying these residues singly to a sandy soil to identify the mechanisms underlying decomposition of the mixed residues. A microcosm experiment using the litter bag technique showed synergistic, nonadditive effects (observed < predicted values) of residue mass remaining (31.1% < 40.3% initial) that were concomitant with chemical constituent loss, including C (cellulose, lignin) and N. The nonadditive effects of soil microbiological parameters in response to the applied residues were synergistic (observed > predicted values) for microbial biomass C (MBC) (92.1 > 58.4 mg C kg−1 soil) and antagonistic (observed < predicted values) for microbial metabolic quotient (i.e., the inverse of microbial C use efficiency (CUE)) (0.03 < 0.06 mmol CO2-C • mmol MBC−1 • hr−1) and N mineralization (14.8 < 16.0 mg N kg−1 soil). In the early stage of decomposition (0–14 days), mixed residues increased MBC relative to the single residues, while they decreased N mineralization relative to single GN (p ≤ 0.05). These results indicate an increase in microbial substrate CUE and N use efficiency (NUE) in the mixed residues relative to the single residues. This increased efficiency provides a basis for the synthesis of microbial products that contribute to the formation of the stable SOM pool. The SOM stabilization could bring about the SOM accumulation that is lacking under the single-RS application.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy11061030