Loading…

Sublimation of terrestrial permafrost and the implications for ice-loss processes on Mars

Sublimation of ice is rate-controlled by vapor transport away from its outer surface and may have generated landforms on Mars. In ice-cemented ground (permafrost), the lag of soil particles remaining after ice loss decreases subsequent sublimation. Varying soil-ice ratios lead to differential lag de...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-04, Vol.10 (1), p.1716-1716, Article 1716
Main Authors: Douglas, Thomas A., Mellon, Michael T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sublimation of ice is rate-controlled by vapor transport away from its outer surface and may have generated landforms on Mars. In ice-cemented ground (permafrost), the lag of soil particles remaining after ice loss decreases subsequent sublimation. Varying soil-ice ratios lead to differential lag development. Here we report 52 years of sublimation measurements from a permafrost tunnel near Fairbanks, Alaska, and constrain models of sublimation, diffusion through porous soil, and lag formation. We derive the first long-term in situ effective diffusion coefficient of ice-free loess, a Mars analog soil, of 9.05 × 10 −6  m 2  s −1 , ~5× larger than past theoretical studies. Exposed ice-wedge sublimation proceeds ~4× faster than predicted from analogy to heat loss by buoyant convection, a theory frequently employed in Mars studies. Our results can be used to map near-surface ice-content differences, identify surface processes controlling landform formation and morphology, and identify target landing sites for human exploration of Mars. Sublimation of ice is believed to have generated a variety of landforms on Mars and other planetary bodies. Here the authors show the first long-term in situ effective diffusion coefficient of terrestrial ice-free loess (Mars analog soil), scaled to Mars average pressure, temperature and CO 2 atmosphere.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-09410-8