Loading…
Hinge-shift mechanism as a protein design principle for the evolution of β-lactamases from substrate promiscuity to specificity
TEM-1 β-lactamase degrades β-lactam antibiotics with a strong preference for penicillins. Sequence reconstruction studies indicate that it evolved from ancestral enzymes that degraded a variety of β-lactam antibiotics with moderate efficiency. This generalist to specialist conversion involved more t...
Saved in:
Published in: | Nature communications 2021-03, Vol.12 (1), p.1852-1852, Article 1852 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | TEM-1 β-lactamase degrades β-lactam antibiotics with a strong preference for penicillins. Sequence reconstruction studies indicate that it evolved from ancestral enzymes that degraded a variety of β-lactam antibiotics with moderate efficiency. This generalist to specialist conversion involved more than 100 mutational changes, but conserved fold and catalytic residues, suggesting a role for dynamics in enzyme evolution. Here, we develop a conformational dynamics computational approach to rationally mold a protein flexibility profile on the basis of a hinge-shift mechanism. By deliberately weighting and altering the conformational dynamics of a putative Precambrian β-lactamase, we engineer enzyme specificity that mimics the modern TEM-1 β-lactamase with only 21 amino acid replacements. Our conformational dynamics design thus re-enacts the evolutionary process and provides a rational allosteric approach for manipulating function while conserving the enzyme active site.
TEM-1 β-lactamase evolved from ancestral enzymes that degraded a variety of β-lactam antibiotics with moderate efficiency and degrades β-lactam antibiotics with a strong preference for penicillins. Here authors developed a computational approach to rationally mold a protein flexibility profile on the basis of a hinge-shift mechanism and show a putative Precambrian β-lactamase that mimics the modern TEM-1 β-lactamase with only 21 amino acid replacements. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-22089-0 |