Loading…
Detection of Algorithmically Generated Malicious Domain Names with Feature Fusion of Meaningful Word Segmentation and N-Gram Sequences
Domain generation algorithms (DGAs) play an important role in network attacks and can be mainly divided into two types: dictionary-based and character-based. Dictionary-based algorithmically generated domains (AGDs) are similar in composition to normal domains and are harder to detect. Although meth...
Saved in:
Published in: | Applied sciences 2023-04, Vol.13 (7), p.4406 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Domain generation algorithms (DGAs) play an important role in network attacks and can be mainly divided into two types: dictionary-based and character-based. Dictionary-based algorithmically generated domains (AGDs) are similar in composition to normal domains and are harder to detect. Although methods based on meaningful word segmentation and n-gram sequence features exhibit good detection performance for AGDs, they are inadequate for mining meaningful word features of domain names, and the performance of hybrid detection of character-based and dictionary-based AGDs needs to be further improved. Therefore, in this paper, we first describe the composition of dictionary-based AGDs using meaningful word segmentation, introduce the standard deviation to better measure the word distribution features, and construct additional 11-dimensional statistical features for word segmentation results as a supplement. Then, by combining 3-gram and 1-gram sequence features, we improve the detection performance for both character-based and dictionary-based AGDs. Finally, we perform feature fusion of the above four kinds of features to achieve an end-to-end detection method for both kinds of AGDs. Experimental results showed that our method achieved an accuracy of 97.24% on the full dataset and better accuracy and F1 values than existing methods on both dictionary-based and character-based AGD datasets. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13074406 |