Loading…
Effect of nitric oxide donor SNAP on GABA release from rat brain nerve terminals
In this work we investigated the effect of nanomolar concentrations of nitric oxide on the release of gamma-aminobutyric acid (GABA) from rat brain nerve terminals using a radioisotope method with [3H]GABA and a spectrofluorimetric method with Ca2+-sensitive probe Fluo-4 AM. It was shown that in the...
Saved in:
Published in: | Ukrainian biochemical journal 2016-09, Vol.88 (5), p.82-89 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work we investigated the effect of nanomolar concentrations of nitric oxide on the release of gamma-aminobutyric acid (GABA) from rat brain nerve terminals using a radioisotope method with [3H]GABA and a spectrofluorimetric method with Ca2+-sensitive probe Fluo-4 AM. It was shown that in the presenÂce of dithiothreitol (DTT), nitric oxide donor SNAP at concentration, in which it produces NO in the nanomolar range, caused Ca2+-independent [3H]GABA release from nerve terminals. The applications of 4-aminopyridine (4-AP) and nipecotic acid (NA), as the inducers of GABA release from vesicular and cytoplasmic pools, showed that the maximum of SNAP/+DTT-induced [3H]GABA release was registered at 10th min of incubation and coincided in time with significant increase (almost double) in NA-induced [3H]GABA release. At this time point, 4-AP-induced release of [3H]GABA was drastically reduced. At the 15th min of incubation of nerve terminals with SNAP/+DTT, the opposite picture was observed: the decrease in NA- and increase in 4-AP-induced [3H]GABA release. Thus, nitric oxide in the form of S-nitrosothiols at nanomolar concentrations causes Ca2+-independent GABA leakage from synaptic vesicles into cytosol with subsequent release from nerve terminals. The reuptake of the neurotransmitter and its re-accumulation in synaptic vesicles occur later. |
---|---|
ISSN: | 2409-4943 2413-5003 |
DOI: | 10.15407/ubj88.05.082 |