Loading…
Nonparametric Estimation of the Density Function of the Distribution of the Noise in CHARN Models
This work is concerned with multivariate conditional heteroscedastic autoregressive nonlinear (CHARN) models with an unknown conditional mean function, conditional variance matrix function and density function of the distribution of noise. We study the kernel estimator of the latter function when th...
Saved in:
Published in: | Mathematics (Basel) 2022-02, Vol.10 (4), p.624 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work is concerned with multivariate conditional heteroscedastic autoregressive nonlinear (CHARN) models with an unknown conditional mean function, conditional variance matrix function and density function of the distribution of noise. We study the kernel estimator of the latter function when the former are either parametric or nonparametric. The consistency, bias and asymptotic normality of the estimator are investigated. Confidence bound curves are given. A simulation experiment is performed to evaluate the performance of the results. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10040624 |