Loading…
Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli
Bacterial biofilms represent an important medical problem; however, the mechanisms of the onset of biofilm formation are poorly understood. Here, using new controlled methods allowing high-throughput and reproducible biofilm growth, we show that biofilm formation is linked to self-imposed mechanical...
Saved in:
Published in: | Nature communications 2018-10, Vol.9 (1), p.4087-10, Article 4087 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-6ec33499dda783aa5728c825443cc8dd2c3f4b8583f5f7e8dc0bde2a729650493 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-6ec33499dda783aa5728c825443cc8dd2c3f4b8583f5f7e8dc0bde2a729650493 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 4087 |
container_title | Nature communications |
container_volume | 9 |
creator | Chu, Eric K. Kilic, Onur Cho, Hojung Groisman, Alex Levchenko, Andre |
description | Bacterial biofilms represent an important medical problem; however, the mechanisms of the onset of biofilm formation are poorly understood. Here, using new controlled methods allowing high-throughput and reproducible biofilm growth, we show that biofilm formation is linked to self-imposed mechanical stress. In growing uropathogenic
Escherichia coli
colonies, we report that mechanical stress can initially emerge from the physical stress accompanying colony confinement within micro-cavities or hydrogel environments reminiscent of the cytosol of host cells. Biofilm formation can then be enhanced by a nutrient access-modulated feedback loop, in which biofilm matrix deposition can be particularly high in areas of increased mechanical and biological stress, with the deposited matrix further enhancing the stress levels. This feedback regulation can lead to adaptive and diverse biofilm formation guided by the environmental stresses. Our results suggest previously unappreciated mechanisms of the onset and progression of biofilm growth.
Bacterial biofilms are an increasingly important medical problem but the mechanisms by which they develop remain largely unknown. Here, using a high-throughput approach, the authors show that biofilm formation is linked to self-imposed mechanical stress. |
doi_str_mv | 10.1038/s41467-018-06552-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a275354c255049fcb1b857c5361648a5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a275354c255049fcb1b857c5361648a5</doaj_id><sourcerecordid>2116848634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-6ec33499dda783aa5728c825443cc8dd2c3f4b8583f5f7e8dc0bde2a729650493</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7BAltiwCfg_zgYJVQUqVWIBbLGcayfxKLEHO6lEnx7PpJSWBd7Y8j3ns699quolwW8JZupd5oTLpsZE1VgKQevbJ9UpxZzUpKHs6YP1SXWe8w6XwVqiOH9enTBMW0IZOa1-fHVTX_tgV3AWzQ5GEzyYCeUluZwRmICW5IfBJdT52PtpRn1Ms1l8DMgHtKa4N8sYB1d86DLD6JKH0RsEcfIvqme9mbI7v5vPqu8fL79dfK6vv3y6uvhwXYPgeKmlA8Z421prGsWMEQ1VoKjgnAEoaymwnndKKNaLvnHKAu6so6ahrRSYt-ysutq4Npqd3ic_m_RLR-P1cSOmQZu0eJicNrQRTHCg4uDsoSMF3IBgkkiujCis9xtrv3azs-DCksz0CPq4Evyoh3ijJWmYbFkBvLkDpPhzdXnRs8_gpskEF9esKSFScSUZL9LX_0h3cU2hPNVRJbEi7NAd3VSQYs7J9feXIVgf0qC3NOiSBn1Mg74tplcP27i3_Pn7ImCbIJdSKB_89-z_YH8DcQDAqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116608139</pqid></control><display><type>article</type><title>Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli</title><source>Publicly Available Content Database</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chu, Eric K. ; Kilic, Onur ; Cho, Hojung ; Groisman, Alex ; Levchenko, Andre</creator><creatorcontrib>Chu, Eric K. ; Kilic, Onur ; Cho, Hojung ; Groisman, Alex ; Levchenko, Andre</creatorcontrib><description>Bacterial biofilms represent an important medical problem; however, the mechanisms of the onset of biofilm formation are poorly understood. Here, using new controlled methods allowing high-throughput and reproducible biofilm growth, we show that biofilm formation is linked to self-imposed mechanical stress. In growing uropathogenic
Escherichia coli
colonies, we report that mechanical stress can initially emerge from the physical stress accompanying colony confinement within micro-cavities or hydrogel environments reminiscent of the cytosol of host cells. Biofilm formation can then be enhanced by a nutrient access-modulated feedback loop, in which biofilm matrix deposition can be particularly high in areas of increased mechanical and biological stress, with the deposited matrix further enhancing the stress levels. This feedback regulation can lead to adaptive and diverse biofilm formation guided by the environmental stresses. Our results suggest previously unappreciated mechanisms of the onset and progression of biofilm growth.
Bacterial biofilms are an increasingly important medical problem but the mechanisms by which they develop remain largely unknown. Here, using a high-throughput approach, the authors show that biofilm formation is linked to self-imposed mechanical stress.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-06552-z</identifier><identifier>PMID: 30291231</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/62 ; 14/19 ; 14/63 ; 631/1647/277 ; 631/326/46 ; 631/553/2695 ; Anti-Bacterial Agents ; Bacteria ; Bacterial proteins ; Biofilms ; Biofilms - growth & development ; Biological stress ; Cell Proliferation ; Colonies ; Control methods ; Control theory ; Cytosol ; Drug Tolerance ; E coli ; Environmental stress ; Escherichia coli ; Feedback ; Feedback loops ; Humanities and Social Sciences ; Hydrogels ; multidisciplinary ; Physical stress ; Pressure ; Science ; Science (multidisciplinary) ; Stress (physiology) ; Stress, Mechanical ; Uropathogenic Escherichia coli - physiology</subject><ispartof>Nature communications, 2018-10, Vol.9 (1), p.4087-10, Article 4087</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-6ec33499dda783aa5728c825443cc8dd2c3f4b8583f5f7e8dc0bde2a729650493</citedby><cites>FETCH-LOGICAL-c540t-6ec33499dda783aa5728c825443cc8dd2c3f4b8583f5f7e8dc0bde2a729650493</cites><orcidid>0000-0002-7902-5539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2116608139/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2116608139?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30291231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Eric K.</creatorcontrib><creatorcontrib>Kilic, Onur</creatorcontrib><creatorcontrib>Cho, Hojung</creatorcontrib><creatorcontrib>Groisman, Alex</creatorcontrib><creatorcontrib>Levchenko, Andre</creatorcontrib><title>Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Bacterial biofilms represent an important medical problem; however, the mechanisms of the onset of biofilm formation are poorly understood. Here, using new controlled methods allowing high-throughput and reproducible biofilm growth, we show that biofilm formation is linked to self-imposed mechanical stress. In growing uropathogenic
Escherichia coli
colonies, we report that mechanical stress can initially emerge from the physical stress accompanying colony confinement within micro-cavities or hydrogel environments reminiscent of the cytosol of host cells. Biofilm formation can then be enhanced by a nutrient access-modulated feedback loop, in which biofilm matrix deposition can be particularly high in areas of increased mechanical and biological stress, with the deposited matrix further enhancing the stress levels. This feedback regulation can lead to adaptive and diverse biofilm formation guided by the environmental stresses. Our results suggest previously unappreciated mechanisms of the onset and progression of biofilm growth.
Bacterial biofilms are an increasingly important medical problem but the mechanisms by which they develop remain largely unknown. Here, using a high-throughput approach, the authors show that biofilm formation is linked to self-imposed mechanical stress.</description><subject>13/62</subject><subject>14/19</subject><subject>14/63</subject><subject>631/1647/277</subject><subject>631/326/46</subject><subject>631/553/2695</subject><subject>Anti-Bacterial Agents</subject><subject>Bacteria</subject><subject>Bacterial proteins</subject><subject>Biofilms</subject><subject>Biofilms - growth & development</subject><subject>Biological stress</subject><subject>Cell Proliferation</subject><subject>Colonies</subject><subject>Control methods</subject><subject>Control theory</subject><subject>Cytosol</subject><subject>Drug Tolerance</subject><subject>E coli</subject><subject>Environmental stress</subject><subject>Escherichia coli</subject><subject>Feedback</subject><subject>Feedback loops</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogels</subject><subject>multidisciplinary</subject><subject>Physical stress</subject><subject>Pressure</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stress (physiology)</subject><subject>Stress, Mechanical</subject><subject>Uropathogenic Escherichia coli - physiology</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7BAltiwCfg_zgYJVQUqVWIBbLGcayfxKLEHO6lEnx7PpJSWBd7Y8j3ns699quolwW8JZupd5oTLpsZE1VgKQevbJ9UpxZzUpKHs6YP1SXWe8w6XwVqiOH9enTBMW0IZOa1-fHVTX_tgV3AWzQ5GEzyYCeUluZwRmICW5IfBJdT52PtpRn1Ms1l8DMgHtKa4N8sYB1d86DLD6JKH0RsEcfIvqme9mbI7v5vPqu8fL79dfK6vv3y6uvhwXYPgeKmlA8Z421prGsWMEQ1VoKjgnAEoaymwnndKKNaLvnHKAu6so6ahrRSYt-ysutq4Npqd3ic_m_RLR-P1cSOmQZu0eJicNrQRTHCg4uDsoSMF3IBgkkiujCis9xtrv3azs-DCksz0CPq4Evyoh3ijJWmYbFkBvLkDpPhzdXnRs8_gpskEF9esKSFScSUZL9LX_0h3cU2hPNVRJbEi7NAd3VSQYs7J9feXIVgf0qC3NOiSBn1Mg74tplcP27i3_Pn7ImCbIJdSKB_89-z_YH8DcQDAqA</recordid><startdate>20181005</startdate><enddate>20181005</enddate><creator>Chu, Eric K.</creator><creator>Kilic, Onur</creator><creator>Cho, Hojung</creator><creator>Groisman, Alex</creator><creator>Levchenko, Andre</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7902-5539</orcidid></search><sort><creationdate>20181005</creationdate><title>Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli</title><author>Chu, Eric K. ; Kilic, Onur ; Cho, Hojung ; Groisman, Alex ; Levchenko, Andre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-6ec33499dda783aa5728c825443cc8dd2c3f4b8583f5f7e8dc0bde2a729650493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/62</topic><topic>14/19</topic><topic>14/63</topic><topic>631/1647/277</topic><topic>631/326/46</topic><topic>631/553/2695</topic><topic>Anti-Bacterial Agents</topic><topic>Bacteria</topic><topic>Bacterial proteins</topic><topic>Biofilms</topic><topic>Biofilms - growth & development</topic><topic>Biological stress</topic><topic>Cell Proliferation</topic><topic>Colonies</topic><topic>Control methods</topic><topic>Control theory</topic><topic>Cytosol</topic><topic>Drug Tolerance</topic><topic>E coli</topic><topic>Environmental stress</topic><topic>Escherichia coli</topic><topic>Feedback</topic><topic>Feedback loops</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogels</topic><topic>multidisciplinary</topic><topic>Physical stress</topic><topic>Pressure</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stress (physiology)</topic><topic>Stress, Mechanical</topic><topic>Uropathogenic Escherichia coli - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Eric K.</creatorcontrib><creatorcontrib>Kilic, Onur</creatorcontrib><creatorcontrib>Cho, Hojung</creatorcontrib><creatorcontrib>Groisman, Alex</creatorcontrib><creatorcontrib>Levchenko, Andre</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Eric K.</au><au>Kilic, Onur</au><au>Cho, Hojung</au><au>Groisman, Alex</au><au>Levchenko, Andre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-10-05</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>4087</spage><epage>10</epage><pages>4087-10</pages><artnum>4087</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Bacterial biofilms represent an important medical problem; however, the mechanisms of the onset of biofilm formation are poorly understood. Here, using new controlled methods allowing high-throughput and reproducible biofilm growth, we show that biofilm formation is linked to self-imposed mechanical stress. In growing uropathogenic
Escherichia coli
colonies, we report that mechanical stress can initially emerge from the physical stress accompanying colony confinement within micro-cavities or hydrogel environments reminiscent of the cytosol of host cells. Biofilm formation can then be enhanced by a nutrient access-modulated feedback loop, in which biofilm matrix deposition can be particularly high in areas of increased mechanical and biological stress, with the deposited matrix further enhancing the stress levels. This feedback regulation can lead to adaptive and diverse biofilm formation guided by the environmental stresses. Our results suggest previously unappreciated mechanisms of the onset and progression of biofilm growth.
Bacterial biofilms are an increasingly important medical problem but the mechanisms by which they develop remain largely unknown. Here, using a high-throughput approach, the authors show that biofilm formation is linked to self-imposed mechanical stress.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30291231</pmid><doi>10.1038/s41467-018-06552-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7902-5539</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2018-10, Vol.9 (1), p.4087-10, Article 4087 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a275354c255049fcb1b857c5361648a5 |
source | Publicly Available Content Database; Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/62 14/19 14/63 631/1647/277 631/326/46 631/553/2695 Anti-Bacterial Agents Bacteria Bacterial proteins Biofilms Biofilms - growth & development Biological stress Cell Proliferation Colonies Control methods Control theory Cytosol Drug Tolerance E coli Environmental stress Escherichia coli Feedback Feedback loops Humanities and Social Sciences Hydrogels multidisciplinary Physical stress Pressure Science Science (multidisciplinary) Stress (physiology) Stress, Mechanical Uropathogenic Escherichia coli - physiology |
title | Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-induced%20mechanical%20stress%20can%20trigger%20biofilm%20formation%20in%20uropathogenic%20Escherichia%20coli&rft.jtitle=Nature%20communications&rft.au=Chu,%20Eric%20K.&rft.date=2018-10-05&rft.volume=9&rft.issue=1&rft.spage=4087&rft.epage=10&rft.pages=4087-10&rft.artnum=4087&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-06552-z&rft_dat=%3Cproquest_doaj_%3E2116848634%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-6ec33499dda783aa5728c825443cc8dd2c3f4b8583f5f7e8dc0bde2a729650493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2116608139&rft_id=info:pmid/30291231&rfr_iscdi=true |