Loading…

Nonsteroidal anti-inflammatory drugs impact the microbial community in three different soil types—a laboratory experiment

Commonly used non-steroidal anti-inflammatory drugs (NSAIDs) can enter the soil via several routes. However, there have been relatively few studies on the impact of NSAIDs on the soil microbiome. Therefore, this study aimed to investigate the impact of Ibuprofen, Diclofenac, and their Mixture on the...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in chemical and environmental engineering 2024-12, Vol.10, p.100833, Article 100833
Main Authors: Kovacs, Emoke Dalma, Kovacs, Melinda Haydee, Barcelo, Damia, Paulo, Pereira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Commonly used non-steroidal anti-inflammatory drugs (NSAIDs) can enter the soil via several routes. However, there have been relatively few studies on the impact of NSAIDs on the soil microbiome. Therefore, this study aimed to investigate the impact of Ibuprofen, Diclofenac, and their Mixture on the soil microbiomes of three different soil types (Cambic chernozem, Luvisols and Calcaric rendzinas). Changes in the soil microbiome profile were assessed using the phospholipid-derived fatty acid (PLFA) approach, as this method allows for the assessment of quantitative variations in the living soil microorganisms. The results showed that microbiome abundance fluctuates over time in the presence of both individual NSAIDs and mixtures. Cambic chernozem had a higher attenuation efficiency than Luvisols and Calcaric rendzinas. Principal component analysis showed that both fungal and bacterial phyla are affected by NSAIDs. The fungal community was more sensitive to NSAIDs than bacterial phyla in all soil types. Since Diclofenac and Ibuprofen were attenuated entirely at the experiment's end, we concluded that some species could use these NSAIDs as carbon or energy resources. The results of this study provide new insights into the response of the soil microbiome to non-target NSAID exposure.
ISSN:2666-0164
2666-0164
DOI:10.1016/j.cscee.2024.100833