Loading…

Machine Learning-Assisted Computational Screening of Adhesive Molecules Derived from Dihydroxyphenyl Alanine

Marine mussels adhere to virtually any surface via 3,4-dihydroxyphenyl-L-alanines (L-DOPA), an amino acid largely contained in their foot proteins. The biofriendly, water-repellent, and strong adhesion of L-DOPA are unparalleled by any synthetic adhesive. Inspired by this, we computationally designe...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2024-01, Vol.9 (1), p.994-1000
Main Authors: Vuppala, Srimai, Chitumalla, Ramesh Kumar, Choi, Seyong, Kim, Taeho, Park, Hwangseo, Jang, Joonkyung
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Marine mussels adhere to virtually any surface via 3,4-dihydroxyphenyl-L-alanines (L-DOPA), an amino acid largely contained in their foot proteins. The biofriendly, water-repellent, and strong adhesion of L-DOPA are unparalleled by any synthetic adhesive. Inspired by this, we computationally designed diverse derivatives of DOPA and studied their potential as adhesives or coating materials. We used first-principles calculations to investigate the adsorption of the DOPA derivatives on graphite. The presence of an electron-withdrawing group, such as nitrogen dioxide, strengthens the adsorption by increasing the π–π interaction between DOPA and graphite. To quantify the distribution of electron charge and to gain insights into the charge distribution at interfaces, we performed Bader charge analysis and examined charge density difference plots. We developed a quantitative structure–property relationship (QSPR) model using an artificial neural network (ANN) to predict the adsorption energy. Using the three-dimensional and quantum mechanical electrostatic potential of a molecule as a descriptor, the present quantum NN model shows promising performance as a predictive QSPR model.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c07208