Loading…

Financial news predicts stock market volatility better than close price

The behaviour of time series data from financial markets is influenced by a rich mixture of quantitative information from the dynamics of the system, captured in its past behaviour, and qualitative information about the underlying fundamentals arriving via various forms of news feeds. Pattern recogn...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of finance and data science 2018-06, Vol.4 (2), p.120-137
Main Authors: Atkins, Adam, Niranjan, Mahesan, Gerding, Enrico
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The behaviour of time series data from financial markets is influenced by a rich mixture of quantitative information from the dynamics of the system, captured in its past behaviour, and qualitative information about the underlying fundamentals arriving via various forms of news feeds. Pattern recognition of financial data using an effective combination of these two types of information is of much interest nowadays, and is addressed in several academic disciplines as well as by practitioners. Recent literature has focused much effort on the use of news-derived information to predict the direction of movement of a stock, i.e. posed as a classification problem, or the precise value of a future asset price, i.e. posed as a regression problem. Here, we show that information extracted from news sources is better at predicting the direction of underlying asset volatility movement, or its second order statistics, rather than its direction of price movement. We show empirical results by constructing machine learning models of Latent Dirichlet Allocation to represent information from news feeds, and simple naïve Bayes classifiers to predict the direction of movements. Empirical results show that the average directional prediction accuracy for volatility, on arrival of new information, is 56%, while that of the asset close price is no better than random at 49%. We evaluate these results using a range of stocks and stock indices in the US market, using a reliable news source as input. We conclude that volatility movements are more predictable than asset price movements when using financial news as machine learning input, and hence could potentially be exploited in pricing derivatives contracts via quantifying volatility. Keywords: Machine learning, Natural language processing, Volatility forecasting, Technical analysis, Computational finance
ISSN:2405-9188
2405-9188
DOI:10.1016/j.jfds.2018.02.002