Loading…
Antibacterial Properties of Visible-Light-Responsive Carbon-Containing Titanium Dioxide Photocatalytic Nanoparticles against Anthrax
The bactericidal activity of conventional titanium dioxide (TiO₂) photocatalyst is effective only on irradiation by ultraviolet light, which restricts the applications of TiO₂ for use in living environments. Recently, carbon-containing TiO₂ nanoparticles [TiO₂(C) NP] were found to be a visible-light...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2016-12, Vol.6 (12), p.237-237 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The bactericidal activity of conventional titanium dioxide (TiO₂) photocatalyst is effective only on irradiation by ultraviolet light, which restricts the applications of TiO₂ for use in living environments. Recently, carbon-containing TiO₂ nanoparticles [TiO₂(C) NP] were found to be a visible-light-responsive photocatalyst (VLRP), which displayed significantly enhanced antibacterial properties under visible light illumination. However, whether TiO₂(C) NPs exert antibacterial properties against
remains elusive. Here, we evaluated these VLRP NPs in the reduction of anthrax-induced pathogenesis. Bacteria-killing experiments indicated that a significantly higher proportion (40%-60%) of all tested
species, including
,
,
, and
, were considerably eliminated by TiO₂(C) NPs. Toxin inactivation analysis further suggested that the TiO₂(C) NPs efficiently detoxify approximately 90% of tested anthrax lethal toxin, a major virulence factor of anthrax. Notably, macrophage clearance experiments further suggested that, even under suboptimal conditions without considerable bacterial killing, the TiO₂(C) NP-mediated photocatalysis still exhibited antibacterial properties through the reduction of bacterial resistance against macrophage killing. Our results collectively suggested that TiO₂(C) NP is a conceptually feasible anti-anthrax material, and the relevant technologies described herein may be useful in the development of new strategies against anthrax. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano6120237 |