Loading…

Linear Operators That Preserve the Genus of a Graph

A graph has genus k if it can be embedded without edge crossings on a smooth orientable surface of genus k and not on one of genus k − 1 . A mapping of the set of graphs on n vertices to itself is called a linear operator if the image of a union of graphs is the union of their images and if it maps...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2019-04, Vol.7 (4), p.312
Main Authors: Beasley, LeRoy B., Kim, Jeong Han, Song, Seok-Zun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A graph has genus k if it can be embedded without edge crossings on a smooth orientable surface of genus k and not on one of genus k − 1 . A mapping of the set of graphs on n vertices to itself is called a linear operator if the image of a union of graphs is the union of their images and if it maps the edgeless graph to the edgeless graph. We investigate linear operators on the set of graphs on n vertices that map graphs of genus k to graphs of genus k and graphs of genus k + 1 to graphs of genus k + 1 . We show that such linear operators are necessarily vertex permutations. Similar results with different restrictions on the genus k preserving operators give the same conclusion.
ISSN:2227-7390
2227-7390
DOI:10.3390/math7040312