Loading…

Investigation of Rotor Efficiency with Varying Rotor Pitch Angle for a Coaxial Drone

Coaxial rotor systems are appealing for multirotor drones, as they increase thrust without increasing the vehicle’s footprint. However, the thrust of a coaxial rotor system is reduced compared to having the rotors in line. It is of interest to increase the efficiency of coaxial systems, both to exte...

Full description

Saved in:
Bibliographic Details
Published in:Drones (Basel) 2022-04, Vol.6 (4), p.91
Main Authors: Giljarhus, Knut Erik Teigen, Porcarelli, Alessandro, Apeland, Jørgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coaxial rotor systems are appealing for multirotor drones, as they increase thrust without increasing the vehicle’s footprint. However, the thrust of a coaxial rotor system is reduced compared to having the rotors in line. It is of interest to increase the efficiency of coaxial systems, both to extend mission time and to enable new mission capabilities. While some parameters of a coaxial system have been explored, such as the rotor-to-rotor distance, the influence of rotor pitch is less understood. This work investigates how adjusting the pitch of the lower rotor relative to that of the upper one impacts the overall efficiency of the system. A methodology based on blade element momentum theory is extended to coaxial rotor systems, and in addition blade-resolved simulations using computational fluid dynamics are performed. A coaxial rotor system for a medium-sized drone with a rotor diameter of 71.12 cm is used for the study. Experiments are performed using a thrust stand to validate the methods. The results show that there exists a peak in total rotor efficiency (thrust-to-power ratio), and that the efficiency can be increased by 2% to 5% by increasing the pitch of the lower rotor. The work contributes to furthering our understanding of coaxial rotor systems, and the results can potentially lead to more efficient drones with increased mission time.
ISSN:2504-446X
2504-446X
DOI:10.3390/drones6040091