Loading…

SOPHIA: An Event-Based IoT and Machine Learning Architecture for Predictive Maintenance in Industry 4.0

Predictive Maintenance (PdM) is a prominent strategy comprising all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the main challenges of PdM is to design and develop an embedded smart system to monitor and predict the hea...

Full description

Saved in:
Bibliographic Details
Published in:Information (Basel) 2020-04, Vol.11 (4), p.202
Main Authors: Calabrese, Matteo, Cimmino, Martin, Fiume, Francesca, Manfrin, Martina, Romeo, Luca, Ceccacci, Silvia, Paolanti, Marina, Toscano, Giuseppe, Ciandrini, Giovanni, Carrotta, Alberto, Mengoni, Maura, Frontoni, Emanuele, Kapetis, Dimos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Predictive Maintenance (PdM) is a prominent strategy comprising all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the main challenges of PdM is to design and develop an embedded smart system to monitor and predict the health status of the machine. In this work, we use a data-driven approach based on machine learning applied to woodworking industrial machines for a major woodworking Italian corporation. Predicted failures probabilities are calculated through tree-based classification models (Gradient Boosting, Random Forest and Extreme Gradient Boosting) and calculated as the temporal evolution of event data. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime (RUL) of woodworking machines. The effectiveness of the proposed method is showed by testing an independent sample of additional woodworking machines without presenting machine down. The Gradient Boosting model achieved accuracy, recall, and precision of 98.9%, 99.6%, and 99.1%. Our predictive maintenance approach deployed on a Big Data framework allows screening simultaneously multiple connected machines by learning from terabytes of log data. The target prediction provides salient information which can be adopted within the maintenance management practice.
ISSN:2078-2489
2078-2489
DOI:10.3390/info11040202