Loading…

Object scale selection of hierarchical image segmentation with deep seeds

Hierarchical image segmentation is a prevalent technique in the literature for improving segmentation quality, where the segmentation result needs to be searched at different scales of the hierarchy to identify objects represented from various scales. In this paper, a novel framework for improving t...

Full description

Saved in:
Bibliographic Details
Published in:IET image processing 2021-01, Vol.15 (1), p.191-205
Main Authors: Al‐Huda, Zaid, Peng, Bo, Yang, Yan, Algburi, Riyadh Nazar Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hierarchical image segmentation is a prevalent technique in the literature for improving segmentation quality, where the segmentation result needs to be searched at different scales of the hierarchy to identify objects represented from various scales. In this paper, a novel framework for improving the quality of object segmentation is presented. To this end, the authors first select the optimal segments among several hierarchical scales of the input image using simple mid‐level features and dynamic programming. Simultaneously, deep seeds are localised on the input image for the foreground and background classes using a deep classification network and a saliency network, respectively. Then, a graphical model is constructed as a set of nodes that jointly propagate information from deep seeds to unmarked regions to obtain the final object segmentation. Comprehensive experiments are performed on different datasets for popular hierarchical image segmentation algorithms. The experimental results show that the proposed framework can significantly improve the quality of object segmentation at low computational costs and without training any segmentation network.
ISSN:1751-9659
1751-9667
DOI:10.1049/ipr2.12020