Loading…
Oriented Immobilization and Quantitative Analysis Simultaneously Realized in Sandwich Immunoassay via His-Tagged Nanobody
Despite the advantages of the nanobody, the unique structure limits its use in sandwich immunoassay. In this study, a facile protocol of sandwich immunoassay using the nanobody was established. In brief, β amyloid and SH2, an anti-β amyloid nanobody, were used as capture antibody and antigen, respec...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2019-05, Vol.24 (10), p.1890 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite the advantages of the nanobody, the unique structure limits its use in sandwich immunoassay. In this study, a facile protocol of sandwich immunoassay using the nanobody was established. In brief, β amyloid and SH2, an anti-β amyloid nanobody, were used as capture antibody and antigen, respectively. The SH2 fused with His-tag was first purified and absorbed on Co
-NTA functional matrix and then immobilized through H
O
oxidation of Co
to Co
under the optimized conditions. Then, 150 mM imidazole and 20 mM EDTA were introduced to remove the unbound SH2. The immobilized SH2 showed highly-sensitive detection of β amyloid. It is interesting that the quantification of the sandwich immunoassay was carried out by determining the His-tag of the detection nanobody, without interference from the His-tag of the capture nanobody. The immobilized SH2 detached exhibited outstanding stability during 30 days of storage. Taken together, His6-tag facilitated both the oriented immobilization of capture antibody and quantitative assay of detection antibody in sandwich immunoassay. We propose a facile and efficient sandwich immunoassay method that opens new avenue to the study of His-tagged protein interactions. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules24101890 |