Loading…
The Impact of Oxidative Stress on Testicular Function and the Role of Antioxidants in Improving it: A Review
Oxidative stress is an important factor for development of male infertility because of very high rate of cell division and mitochondrial oxygen consumption in testicular tissue as well as comparably higher levels of unsaturated fatty acids in this tissue than in other tissues. Moreover, the level of...
Saved in:
Published in: | Journal of clinical and diagnostic research 2017-05, Vol.11 (5), p.IE01-IE05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oxidative stress is an important factor for development of male infertility because of very high rate of cell division and mitochondrial oxygen consumption in testicular tissue as well as comparably higher levels of unsaturated fatty acids in this tissue than in other tissues. Moreover, the level of oxygen pressure is low due to the weakness of testicular artery; therefore, there is a severe cell competition for oxygen. Therefore, the testicular tissue and male reproductive system are particularly susceptible to oxidative stress. On the other hand, exposure to X-ray, toxins and chemicals found in the environment as well as specific physical conditions such as varicocele can exacerbate the oxidative stress and induce apoptosis of germ cells and subsequently spermatogenesis. However, under normal conditions, the body's capacity to produce antioxidants for inhibiting adverse effects of oxidative stress is affected by metabolic process and genetic structure. Besides that, environmental factors such as diet, pollutants, and chemicals can affect this capacity. Thus, the body's antioxidant system alone is not able to neutralize all free radicals and prevent harmful complications of oxidative stress. Therefore, use of antioxidants and development of antioxidant therapy can break down the oxidative chain reaction and play a very significant role in increasing the body's capacity to fight free radical-induced oxidative stress, and therefore improve the process of spermatogenesis. |
---|---|
ISSN: | 2249-782X 0973-709X |
DOI: | 10.7860/JCDR/2017/23927.9886 |