Loading…
Rough Neutrosophic Multisets Geometric Aggregation Operator with Entropy Weight Combined Roughness Dice Similarity Measure and Its Application
Rough neutrosophic multisets (RNM) is an uncertainty set theory generalized from the rough neutrosophic set. In the same equivalence relation, the universal set is a neutrosophic multisets with boundary regions involving lower and upper approximation. To date, to handle the multiplicity of informati...
Saved in:
Published in: | ITM Web of Conferences 2024-01, Vol.67, p.01026 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rough neutrosophic multisets (RNM) is an uncertainty set theory generalized from the rough neutrosophic set. In the same equivalence relation, the universal set is a neutrosophic multisets with boundary regions involving lower and upper approximation. To date, to handle the multiplicity of information collected, the rough neutrosophic multisets geometric aggregation operator (RNMGAO) is introduced. The algebraic operations of RNM used in the derivation of RNMGAO are defined. The entropy measure of RNM is also discussed as a weighted assign for each criterion simultaneously with the geometric aggregation operator. The roughness Dice similarity measure of RNM is combined in methodology for ranking purposed. The application in medical diagnosis of three epidemic diseases Coronavirus, Influenza, and Pneumonia is implemented as a case study. |
---|---|
ISSN: | 2431-7578 2271-2097 |
DOI: | 10.1051/itmconf/20246701026 |