Loading…
Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes
Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation resu...
Saved in:
Published in: | npj computational materials 2021-09, Vol.7 (1), p.1-11, Article 142 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 1 |
container_title | npj computational materials |
container_volume | 7 |
creator | Liu, Ziteng Shi, Yinghuan Chen, Hongwei Qin, Tiexin Zhou, Xuejie Huo, Jun Dong, Hao Yang, Xiao Zhu, Xiangdong Chen, Xuening Zhang, Li Yang, Mingli Gao, Yang Ma, Jing |
description | Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments. |
doi_str_mv | 10.1038/s41524-021-00618-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a7d129f801914908a22f5751d20f450f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a7d129f801914908a22f5751d20f450f</doaj_id><sourcerecordid>2570311542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEElXbL8DJEufA2I4T54gq_lQq4gJnazYe73qVtYPtFSxnPjjeZgWceprRaH5v7Pea5hWHNxykfps7rkTXguAtQM91y581VwLU0Mqxh-f_9S-b25z3AMBHoUUHV83vzzjtfCA2E6bgw5bFwJYUF0rFU2bRscNxLj5PONOljcc0EdudbIo_T7hg8YVYwBAXrNA0V8xiwUwlsx--7Jj1zlGiUNghpmUX57g9a2OwLPtflG-aFw7nTLeXet18-_D-692n9uHLx_u7dw_tJNVYWjsigQXZI3eD1YOcOi2Jhg1ZPmo3jABCo-ZiowZBWkqB0HEJYtP3tAEhr5v7VddG3Jsl-QOmk4nozeMgpq25_MDgYLkYna5O8W4EjUI4NShuBbhOgatar1etatb3I-Vi9tWXUJ9vhBpAcq6680Wxbk0p5pzI_b3KwZzDM2t4poZnHsMzvEJyhXJdDltK_6SfoP4Aft-ebA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570311542</pqid></control><display><type>article</type><title>Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Liu, Ziteng ; Shi, Yinghuan ; Chen, Hongwei ; Qin, Tiexin ; Zhou, Xuejie ; Huo, Jun ; Dong, Hao ; Yang, Xiao ; Zhu, Xiangdong ; Chen, Xuening ; Zhang, Li ; Yang, Mingli ; Gao, Yang ; Ma, Jing</creator><creatorcontrib>Liu, Ziteng ; Shi, Yinghuan ; Chen, Hongwei ; Qin, Tiexin ; Zhou, Xuejie ; Huo, Jun ; Dong, Hao ; Yang, Xiao ; Zhu, Xiangdong ; Chen, Xuening ; Zhang, Li ; Yang, Mingli ; Gao, Yang ; Ma, Jing</creatorcontrib><description>Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-021-00618-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/925 ; Anticancer properties ; Artificial neural networks ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Crystal structure ; Crystallinity ; Datasets ; Deep learning ; Density functional theory ; Hydroxyapatite ; Learning algorithms ; Machine learning ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Nanoparticles ; Neural networks ; Theoretical ; Zeta potential</subject><ispartof>npj computational materials, 2021-09, Vol.7 (1), p.1-11, Article 142</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023</citedby><cites>FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023</cites><orcidid>0000-0001-7248-8218 ; 0000-0002-5791-6015 ; 0000-0001-8455-987X ; 0000-0002-2488-1813 ; 0000-0001-5848-9775 ; 0000-0001-7280-7506 ; 0000-0001-8590-8840 ; 0000-0002-3818-7419 ; 0000-0002-9626-913X ; 0000-0001-8782-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2570311542/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2570311542?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,38497,43876,44571,74161,74875</link.rule.ids></links><search><creatorcontrib>Liu, Ziteng</creatorcontrib><creatorcontrib>Shi, Yinghuan</creatorcontrib><creatorcontrib>Chen, Hongwei</creatorcontrib><creatorcontrib>Qin, Tiexin</creatorcontrib><creatorcontrib>Zhou, Xuejie</creatorcontrib><creatorcontrib>Huo, Jun</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhu, Xiangdong</creatorcontrib><creatorcontrib>Chen, Xuening</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Yang, Mingli</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><title>Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments.</description><subject>639/301</subject><subject>639/925</subject><subject>Anticancer properties</subject><subject>Artificial neural networks</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Density functional theory</subject><subject>Hydroxyapatite</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Nanoparticles</subject><subject>Neural networks</subject><subject>Theoretical</subject><subject>Zeta potential</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxSMEElXbL8DJEufA2I4T54gq_lQq4gJnazYe73qVtYPtFSxnPjjeZgWceprRaH5v7Pea5hWHNxykfps7rkTXguAtQM91y581VwLU0Mqxh-f_9S-b25z3AMBHoUUHV83vzzjtfCA2E6bgw5bFwJYUF0rFU2bRscNxLj5PONOljcc0EdudbIo_T7hg8YVYwBAXrNA0V8xiwUwlsx--7Jj1zlGiUNghpmUX57g9a2OwLPtflG-aFw7nTLeXet18-_D-692n9uHLx_u7dw_tJNVYWjsigQXZI3eD1YOcOi2Jhg1ZPmo3jABCo-ZiowZBWkqB0HEJYtP3tAEhr5v7VddG3Jsl-QOmk4nozeMgpq25_MDgYLkYna5O8W4EjUI4NShuBbhOgatar1etatb3I-Vi9tWXUJ9vhBpAcq6680Wxbk0p5pzI_b3KwZzDM2t4poZnHsMzvEJyhXJdDltK_6SfoP4Aft-ebA</recordid><startdate>20210908</startdate><enddate>20210908</enddate><creator>Liu, Ziteng</creator><creator>Shi, Yinghuan</creator><creator>Chen, Hongwei</creator><creator>Qin, Tiexin</creator><creator>Zhou, Xuejie</creator><creator>Huo, Jun</creator><creator>Dong, Hao</creator><creator>Yang, Xiao</creator><creator>Zhu, Xiangdong</creator><creator>Chen, Xuening</creator><creator>Zhang, Li</creator><creator>Yang, Mingli</creator><creator>Gao, Yang</creator><creator>Ma, Jing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7248-8218</orcidid><orcidid>https://orcid.org/0000-0002-5791-6015</orcidid><orcidid>https://orcid.org/0000-0001-8455-987X</orcidid><orcidid>https://orcid.org/0000-0002-2488-1813</orcidid><orcidid>https://orcid.org/0000-0001-5848-9775</orcidid><orcidid>https://orcid.org/0000-0001-7280-7506</orcidid><orcidid>https://orcid.org/0000-0001-8590-8840</orcidid><orcidid>https://orcid.org/0000-0002-3818-7419</orcidid><orcidid>https://orcid.org/0000-0002-9626-913X</orcidid><orcidid>https://orcid.org/0000-0001-8782-988X</orcidid></search><sort><creationdate>20210908</creationdate><title>Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes</title><author>Liu, Ziteng ; Shi, Yinghuan ; Chen, Hongwei ; Qin, Tiexin ; Zhou, Xuejie ; Huo, Jun ; Dong, Hao ; Yang, Xiao ; Zhu, Xiangdong ; Chen, Xuening ; Zhang, Li ; Yang, Mingli ; Gao, Yang ; Ma, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301</topic><topic>639/925</topic><topic>Anticancer properties</topic><topic>Artificial neural networks</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Density functional theory</topic><topic>Hydroxyapatite</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Nanoparticles</topic><topic>Neural networks</topic><topic>Theoretical</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ziteng</creatorcontrib><creatorcontrib>Shi, Yinghuan</creatorcontrib><creatorcontrib>Chen, Hongwei</creatorcontrib><creatorcontrib>Qin, Tiexin</creatorcontrib><creatorcontrib>Zhou, Xuejie</creatorcontrib><creatorcontrib>Huo, Jun</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhu, Xiangdong</creatorcontrib><creatorcontrib>Chen, Xuening</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Yang, Mingli</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ziteng</au><au>Shi, Yinghuan</au><au>Chen, Hongwei</au><au>Qin, Tiexin</au><au>Zhou, Xuejie</au><au>Huo, Jun</au><au>Dong, Hao</au><au>Yang, Xiao</au><au>Zhu, Xiangdong</au><au>Chen, Xuening</au><au>Zhang, Li</au><au>Yang, Mingli</au><au>Gao, Yang</au><au>Ma, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2021-09-08</date><risdate>2021</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>142</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-021-00618-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7248-8218</orcidid><orcidid>https://orcid.org/0000-0002-5791-6015</orcidid><orcidid>https://orcid.org/0000-0001-8455-987X</orcidid><orcidid>https://orcid.org/0000-0002-2488-1813</orcidid><orcidid>https://orcid.org/0000-0001-5848-9775</orcidid><orcidid>https://orcid.org/0000-0001-7280-7506</orcidid><orcidid>https://orcid.org/0000-0001-8590-8840</orcidid><orcidid>https://orcid.org/0000-0002-3818-7419</orcidid><orcidid>https://orcid.org/0000-0002-9626-913X</orcidid><orcidid>https://orcid.org/0000-0001-8782-988X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3960 |
ispartof | npj computational materials, 2021-09, Vol.7 (1), p.1-11, Article 142 |
issn | 2057-3960 2057-3960 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a7d129f801914908a22f5751d20f450f |
source | Publicly Available Content Database; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301 639/925 Anticancer properties Artificial neural networks Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Crystal structure Crystallinity Datasets Deep learning Density functional theory Hydroxyapatite Learning algorithms Machine learning Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Nanoparticles Neural networks Theoretical Zeta potential |
title | Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20on%20properties%20of%20multiscale%20multisource%20hydroxyapatite%20nanoparticles%20datasets%20with%20different%20morphologies%20and%20sizes&rft.jtitle=npj%20computational%20materials&rft.au=Liu,%20Ziteng&rft.date=2021-09-08&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=142&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-021-00618-1&rft_dat=%3Cproquest_doaj_%3E2570311542%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570311542&rft_id=info:pmid/&rfr_iscdi=true |