Loading…

Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes

Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation resu...

Full description

Saved in:
Bibliographic Details
Published in:npj computational materials 2021-09, Vol.7 (1), p.1-11, Article 142
Main Authors: Liu, Ziteng, Shi, Yinghuan, Chen, Hongwei, Qin, Tiexin, Zhou, Xuejie, Huo, Jun, Dong, Hao, Yang, Xiao, Zhu, Xiangdong, Chen, Xuening, Zhang, Li, Yang, Mingli, Gao, Yang, Ma, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023
cites cdi_FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023
container_end_page 11
container_issue 1
container_start_page 1
container_title npj computational materials
container_volume 7
creator Liu, Ziteng
Shi, Yinghuan
Chen, Hongwei
Qin, Tiexin
Zhou, Xuejie
Huo, Jun
Dong, Hao
Yang, Xiao
Zhu, Xiangdong
Chen, Xuening
Zhang, Li
Yang, Mingli
Gao, Yang
Ma, Jing
description Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments.
doi_str_mv 10.1038/s41524-021-00618-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a7d129f801914908a22f5751d20f450f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a7d129f801914908a22f5751d20f450f</doaj_id><sourcerecordid>2570311542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEElXbL8DJEufA2I4T54gq_lQq4gJnazYe73qVtYPtFSxnPjjeZgWceprRaH5v7Pea5hWHNxykfps7rkTXguAtQM91y581VwLU0Mqxh-f_9S-b25z3AMBHoUUHV83vzzjtfCA2E6bgw5bFwJYUF0rFU2bRscNxLj5PONOljcc0EdudbIo_T7hg8YVYwBAXrNA0V8xiwUwlsx--7Jj1zlGiUNghpmUX57g9a2OwLPtflG-aFw7nTLeXet18-_D-692n9uHLx_u7dw_tJNVYWjsigQXZI3eD1YOcOi2Jhg1ZPmo3jABCo-ZiowZBWkqB0HEJYtP3tAEhr5v7VddG3Jsl-QOmk4nozeMgpq25_MDgYLkYna5O8W4EjUI4NShuBbhOgatar1etatb3I-Vi9tWXUJ9vhBpAcq6680Wxbk0p5pzI_b3KwZzDM2t4poZnHsMzvEJyhXJdDltK_6SfoP4Aft-ebA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570311542</pqid></control><display><type>article</type><title>Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Liu, Ziteng ; Shi, Yinghuan ; Chen, Hongwei ; Qin, Tiexin ; Zhou, Xuejie ; Huo, Jun ; Dong, Hao ; Yang, Xiao ; Zhu, Xiangdong ; Chen, Xuening ; Zhang, Li ; Yang, Mingli ; Gao, Yang ; Ma, Jing</creator><creatorcontrib>Liu, Ziteng ; Shi, Yinghuan ; Chen, Hongwei ; Qin, Tiexin ; Zhou, Xuejie ; Huo, Jun ; Dong, Hao ; Yang, Xiao ; Zhu, Xiangdong ; Chen, Xuening ; Zhang, Li ; Yang, Mingli ; Gao, Yang ; Ma, Jing</creatorcontrib><description>Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-021-00618-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/925 ; Anticancer properties ; Artificial neural networks ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Crystal structure ; Crystallinity ; Datasets ; Deep learning ; Density functional theory ; Hydroxyapatite ; Learning algorithms ; Machine learning ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Nanoparticles ; Neural networks ; Theoretical ; Zeta potential</subject><ispartof>npj computational materials, 2021-09, Vol.7 (1), p.1-11, Article 142</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023</citedby><cites>FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023</cites><orcidid>0000-0001-7248-8218 ; 0000-0002-5791-6015 ; 0000-0001-8455-987X ; 0000-0002-2488-1813 ; 0000-0001-5848-9775 ; 0000-0001-7280-7506 ; 0000-0001-8590-8840 ; 0000-0002-3818-7419 ; 0000-0002-9626-913X ; 0000-0001-8782-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2570311542/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2570311542?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,38497,43876,44571,74161,74875</link.rule.ids></links><search><creatorcontrib>Liu, Ziteng</creatorcontrib><creatorcontrib>Shi, Yinghuan</creatorcontrib><creatorcontrib>Chen, Hongwei</creatorcontrib><creatorcontrib>Qin, Tiexin</creatorcontrib><creatorcontrib>Zhou, Xuejie</creatorcontrib><creatorcontrib>Huo, Jun</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhu, Xiangdong</creatorcontrib><creatorcontrib>Chen, Xuening</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Yang, Mingli</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><title>Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments.</description><subject>639/301</subject><subject>639/925</subject><subject>Anticancer properties</subject><subject>Artificial neural networks</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Density functional theory</subject><subject>Hydroxyapatite</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Nanoparticles</subject><subject>Neural networks</subject><subject>Theoretical</subject><subject>Zeta potential</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9v1DAQxSMEElXbL8DJEufA2I4T54gq_lQq4gJnazYe73qVtYPtFSxnPjjeZgWceprRaH5v7Pea5hWHNxykfps7rkTXguAtQM91y581VwLU0Mqxh-f_9S-b25z3AMBHoUUHV83vzzjtfCA2E6bgw5bFwJYUF0rFU2bRscNxLj5PONOljcc0EdudbIo_T7hg8YVYwBAXrNA0V8xiwUwlsx--7Jj1zlGiUNghpmUX57g9a2OwLPtflG-aFw7nTLeXet18-_D-692n9uHLx_u7dw_tJNVYWjsigQXZI3eD1YOcOi2Jhg1ZPmo3jABCo-ZiowZBWkqB0HEJYtP3tAEhr5v7VddG3Jsl-QOmk4nozeMgpq25_MDgYLkYna5O8W4EjUI4NShuBbhOgatar1etatb3I-Vi9tWXUJ9vhBpAcq6680Wxbk0p5pzI_b3KwZzDM2t4poZnHsMzvEJyhXJdDltK_6SfoP4Aft-ebA</recordid><startdate>20210908</startdate><enddate>20210908</enddate><creator>Liu, Ziteng</creator><creator>Shi, Yinghuan</creator><creator>Chen, Hongwei</creator><creator>Qin, Tiexin</creator><creator>Zhou, Xuejie</creator><creator>Huo, Jun</creator><creator>Dong, Hao</creator><creator>Yang, Xiao</creator><creator>Zhu, Xiangdong</creator><creator>Chen, Xuening</creator><creator>Zhang, Li</creator><creator>Yang, Mingli</creator><creator>Gao, Yang</creator><creator>Ma, Jing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7248-8218</orcidid><orcidid>https://orcid.org/0000-0002-5791-6015</orcidid><orcidid>https://orcid.org/0000-0001-8455-987X</orcidid><orcidid>https://orcid.org/0000-0002-2488-1813</orcidid><orcidid>https://orcid.org/0000-0001-5848-9775</orcidid><orcidid>https://orcid.org/0000-0001-7280-7506</orcidid><orcidid>https://orcid.org/0000-0001-8590-8840</orcidid><orcidid>https://orcid.org/0000-0002-3818-7419</orcidid><orcidid>https://orcid.org/0000-0002-9626-913X</orcidid><orcidid>https://orcid.org/0000-0001-8782-988X</orcidid></search><sort><creationdate>20210908</creationdate><title>Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes</title><author>Liu, Ziteng ; Shi, Yinghuan ; Chen, Hongwei ; Qin, Tiexin ; Zhou, Xuejie ; Huo, Jun ; Dong, Hao ; Yang, Xiao ; Zhu, Xiangdong ; Chen, Xuening ; Zhang, Li ; Yang, Mingli ; Gao, Yang ; Ma, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301</topic><topic>639/925</topic><topic>Anticancer properties</topic><topic>Artificial neural networks</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Density functional theory</topic><topic>Hydroxyapatite</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Nanoparticles</topic><topic>Neural networks</topic><topic>Theoretical</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ziteng</creatorcontrib><creatorcontrib>Shi, Yinghuan</creatorcontrib><creatorcontrib>Chen, Hongwei</creatorcontrib><creatorcontrib>Qin, Tiexin</creatorcontrib><creatorcontrib>Zhou, Xuejie</creatorcontrib><creatorcontrib>Huo, Jun</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Zhu, Xiangdong</creatorcontrib><creatorcontrib>Chen, Xuening</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Yang, Mingli</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ziteng</au><au>Shi, Yinghuan</au><au>Chen, Hongwei</au><au>Qin, Tiexin</au><au>Zhou, Xuejie</au><au>Huo, Jun</au><au>Dong, Hao</au><au>Yang, Xiao</au><au>Zhu, Xiangdong</au><au>Chen, Xuening</au><au>Zhang, Li</au><au>Yang, Mingli</au><au>Gao, Yang</au><au>Ma, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2021-09-08</date><risdate>2021</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>142</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-021-00618-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7248-8218</orcidid><orcidid>https://orcid.org/0000-0002-5791-6015</orcidid><orcidid>https://orcid.org/0000-0001-8455-987X</orcidid><orcidid>https://orcid.org/0000-0002-2488-1813</orcidid><orcidid>https://orcid.org/0000-0001-5848-9775</orcidid><orcidid>https://orcid.org/0000-0001-7280-7506</orcidid><orcidid>https://orcid.org/0000-0001-8590-8840</orcidid><orcidid>https://orcid.org/0000-0002-3818-7419</orcidid><orcidid>https://orcid.org/0000-0002-9626-913X</orcidid><orcidid>https://orcid.org/0000-0001-8782-988X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3960
ispartof npj computational materials, 2021-09, Vol.7 (1), p.1-11, Article 142
issn 2057-3960
2057-3960
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a7d129f801914908a22f5751d20f450f
source Publicly Available Content Database; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301
639/925
Anticancer properties
Artificial neural networks
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computational Intelligence
Crystal structure
Crystallinity
Datasets
Deep learning
Density functional theory
Hydroxyapatite
Learning algorithms
Machine learning
Materials Science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Nanoparticles
Neural networks
Theoretical
Zeta potential
title Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20on%20properties%20of%20multiscale%20multisource%20hydroxyapatite%20nanoparticles%20datasets%20with%20different%20morphologies%20and%20sizes&rft.jtitle=npj%20computational%20materials&rft.au=Liu,%20Ziteng&rft.date=2021-09-08&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=142&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-021-00618-1&rft_dat=%3Cproquest_doaj_%3E2570311542%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-d9ae0d036a1f7d873c483ee7bed198f790028a812b572e8332a041302b66eb023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570311542&rft_id=info:pmid/&rfr_iscdi=true