Loading…
A flexible symbolic regression method for constructing interpretable clinical prediction models
Machine learning (ML) models trained for triggering clinical decision support (CDS) are typically either accurate or interpretable but not both. Scaling CDS to the panoply of clinical use cases while mitigating risks to patients will require many ML models be intuitively interpretable for clinicians...
Saved in:
Published in: | NPJ digital medicine 2023-06, Vol.6 (1), p.107-14, Article 107 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Machine learning (ML) models trained for triggering clinical decision support (CDS) are typically either accurate or interpretable but not both. Scaling CDS to the panoply of clinical use cases while mitigating risks to patients will require many ML models be intuitively interpretable for clinicians. To this end, we adapted a symbolic regression method, coined the feature engineering automation tool (FEAT), to train concise and accurate models from high-dimensional electronic health record (EHR) data. We first present an in-depth application of FEAT to classify hypertension, hypertension with unexplained hypokalemia, and apparent treatment-resistant hypertension (aTRH) using EHR data for 1200 subjects receiving longitudinal care in a large healthcare system. FEAT models trained to predict phenotypes adjudicated by chart review had equivalent or higher discriminative performance (
p
  |
---|---|
ISSN: | 2398-6352 2398-6352 |
DOI: | 10.1038/s41746-023-00833-8 |