Loading…

Mining High Utility Time Interval Sequences Using MapReduce Approach: Multiple Utility Framework

Mining high utility sequential patterns is observed to be a significant research in data mining. Several methods mine the sequential patterns while taking utility values into consideration. The patterns of this type can determine the order in which items were purchased, but not the time interval bet...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.123301-123315
Main Authors: Saleti, Sumalatha, Lakshmi, T. Jaya, Ahmad, Mohd Wazih
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mining high utility sequential patterns is observed to be a significant research in data mining. Several methods mine the sequential patterns while taking utility values into consideration. The patterns of this type can determine the order in which items were purchased, but not the time interval between them. The time interval among items is important for predicting the most useful real-world circumstances, including retail market basket data analysis, stock market fluctuations, DNA sequence analysis, and so on. There are a very few algorithms for mining sequential patterns those consider both the utility and time interval. However, they assume the same threshold for each item, maintaining the same unit profit. Moreover, with the rapid growth in data, the traditional algorithms cannot handle the big data and are not scalable. To handle this problem, we propose a distributed three phase MapReduce framework that considers multiple utilities and suitable for handling big data. The time constraints are pushed into the algorithm instead of pre-defined intervals. Also, the proposed upper bound minimizes the number of candidate patterns during the mining process. The approach has been tested and the experimental results show its efficiency in terms of run time, memory utilization, and scalability.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3224217