Loading…
A low complexity heuristic to solve a learning objects recommendation problem
The recommendation of learning objects in virtual learning environments has become the focus of research to improve online learning experience. Several approaches have been presented in an attempt to model the individual characteristics of the students and offer learning objects that best suit their...
Saved in:
Published in: | Smart learning environments 2020-09, Vol.7 (1), p.1-17, Article 23 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recommendation of learning objects in virtual learning environments has become the focus of research to improve online learning experience. Several approaches have been presented in an attempt to model the individual characteristics of the students and offer learning objects that best suit their particularities. Most of them, though, are impractical in real-world scenarios due to the high computational cost as a huge number of repositories offering learning objects such as Youtube, Wikipedia, Stackoverflow, Github, discussion forums, social networks and many others are available and each has a large amount of learning objects that can be retrieved. In this work, we propose a low complexity heuristic to solve this problem, comparing it to a classical mixed-integer linear programming model and classical genetic algorithm in varying dataset sizes that contain from 2000 to 1360000 learning objects. Performance and optimality were analyzed. The results showed that the proposed technique was only slightly suboptimal, while its computational cost was considerably smaller than the one presented by the linear optimization approach. |
---|---|
ISSN: | 2196-7091 2196-7091 |
DOI: | 10.1186/s40561-020-00133-8 |