Loading…

3-D OCT imaging of hyalocytes in partial posterior vitreous detachment and vaso-occlusive retinal disease

To describe the spatial distribution and morphologic characteristics of macrophage-like cells called hyalocytes in the posterior vitreous cortex of a patient with unilateral partial posterior vitreous detachment (PVD) using coronal plane en face optical coherence tomography (OCT). A 54-year-old male...

Full description

Saved in:
Bibliographic Details
Published in:American journal of ophthalmology case reports 2023-06, Vol.30, p.101836, Article 101836
Main Authors: Ahsanuddin, Sofia, Rios, Hernan A., Glassberg, Jeffrey A., Chui, Toco Y.P., Sebag, J., Rosen, Richard B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To describe the spatial distribution and morphologic characteristics of macrophage-like cells called hyalocytes in the posterior vitreous cortex of a patient with unilateral partial posterior vitreous detachment (PVD) using coronal plane en face optical coherence tomography (OCT). A 54-year-old male with sickle cell disease (HbSC genotype) presented with a partial PVD in one eye. Rendered volumes of a slab extending from 600 μm to 3 μm anterior to the inner limiting membrane (ILM) revealed hyperreflective foci in the detached posterior vitreous cortex suspended anterior to the macula, likely representing hyalocytes. In the fellow eye without PVD, hyperreflective foci were located 3 μm anterior to the ILM. The morphology of the cells in the eye with PVD varied between a ramified state with multiple elongated processes and a more activated state characterized by a plump cell body with fewer retracted processes. In the same anatomical location, the hyperreflective foci were 10-fold more numerous in the patient with vaso-occlusive disease than in an unaffected, age-matched control. Direct, non-invasive, and label-free techniques of imaging cells at the vitreoretinal interface and within the vitreous body is an emerging field. The findings from this case report suggest that coronal plane en face OCT can be used to provide a detailed and quantitative characterization of cells at the human vitreo-retinal interface in vivo. Importantly, this case report demonstrates that 3D-OCT renderings can enhance visualization of these cells in relation to the ILM, which may provide clues concerning the identity and contribution of these cells to the pathogenesis of vitreo-retinal diseases.
ISSN:2451-9936
2451-9936
DOI:10.1016/j.ajoc.2023.101836