Loading…
A Caputo–Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment
In recent years, many new definitions of fractional derivatives have been proposed and used to develop mathematical models for a wide variety of real-world systems containing memory, history, or nonlocal effects. The main purpose of the present paper is to develop and analyze a Caputo–Fabrizio fract...
Saved in:
Published in: | Advances in difference equations 2019-05, Vol.2019 (1), p.1-20, Article 200 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, many new definitions of fractional derivatives have been proposed and used to develop mathematical models for a wide variety of real-world systems containing memory, history, or nonlocal effects. The main purpose of the present paper is to develop and analyze a Caputo–Fabrizio fractional derivative model for the HIV/AIDS epidemic which includes an antiretroviral treatment compartment. The existence and uniqueness of the system of solutions of the model are established using a fixed-point theorem and an iterative method. The model is shown to have a disease-free and an endemic equilibrium point. Conditions are derived for the existence of the endemic equilibrium point and for the local asymptotic stability of the disease-free equilibrium point. The results confirm that the disease-free equilibrium point becomes increasingly stable as the fractional order is reduced. Numerical simulations are carried out using a three-step Adams–Bashforth predictor method for a range of fractional orders to illustrate the effects of varying the fractional order and to support the theoretical results. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-019-2138-9 |