Loading…
Engineering Sodium Metal Anode with Sodiophilic Bismuthide Penetration for Dendrite-Free and High-Rate Sodium-Ion Battery
Sodium (Na) metal batteries with a high volumetric energy density that can be operated at high rates are highly desirable. However, an uneven Na-ion migration in bulk Na anodes leads to localized deposition/dissolution of sodium during high-rate plating/stripping behaviors, followed by severe dendri...
Saved in:
Published in: | Engineering (Beijing, China) China), 2022-04, Vol.11 (4), p.87-94 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sodium (Na) metal batteries with a high volumetric energy density that can be operated at high rates are highly desirable. However, an uneven Na-ion migration in bulk Na anodes leads to localized deposition/dissolution of sodium during high-rate plating/stripping behaviors, followed by severe dendrite growth and loose stacking. Herein, we engineer the Na hybrid anode with sodiophilic Na3Bi-penetration to develop the abundant phase-boundary ionic transport channels. Compared to intrinsic Na, the reduced adsorption energy and ion-diffusion barrier on Na3Bi ensure even Na+ nucleation and rapid Na+ migration within the hybrid electrode, leading to uniform deposition and dissolution at high current densities. Furthermore, the bismuthide enables compact Na deposition within the sodiophilic framework during cycling, thus favoring a high volumetric capacity. Consequently, the obtained anode was endowed with a high current density (up to 5 mA∙cm−2), high areal capacity (up to 5 mA∙h∙cm−2), and long-term cycling stability (up to 2800 h at 2 mA∙cm−2). |
---|---|
ISSN: | 2095-8099 |
DOI: | 10.1016/j.eng.2021.08.028 |