Loading…

Oscillations of Delta-like1 regulate the balance between differentiation and maintenance of muscle stem cells

Cell-cell interactions mediated by Notch are critical for the maintenance of skeletal muscle stem cells. However, dynamics, cellular source and identity of functional Notch ligands during expansion of the stem cell pool in muscle growth and regeneration remain poorly characterized. Here we demonstra...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-02, Vol.12 (1), p.1318-1318, Article 1318
Main Authors: Zhang, Yao, Lahmann, Ines, Baum, Katharina, Shimojo, Hiromi, Mourikis, Philippos, Wolf, Jana, Kageyama, Ryoichiro, Birchmeier, Carmen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cell-cell interactions mediated by Notch are critical for the maintenance of skeletal muscle stem cells. However, dynamics, cellular source and identity of functional Notch ligands during expansion of the stem cell pool in muscle growth and regeneration remain poorly characterized. Here we demonstrate that oscillating Delta-like 1 (Dll1) produced by myogenic cells is an indispensable Notch ligand for self-renewal of muscle stem cells in mice. Dll1 expression is controlled by the Notch target Hes1 and the muscle regulatory factor MyoD. Consistent with our mathematical model, our experimental analyses show that Hes1 acts as the oscillatory pacemaker, whereas MyoD regulates robust Dll1 expression. Interfering with Dll1 oscillations without changing its overall expression level impairs self-renewal, resulting in premature differentiation of muscle stem cells during muscle growth and regeneration. We conclude that the oscillatory Dll1 input into Notch signaling ensures the equilibrium between self-renewal and differentiation in myogenic cell communities. The cell source and dynamics of Notch ligands during the regulation of muscle stem cells is unclear. Here, the authors show that the Notch ligand Dll1 has to oscillate in order to control the balance between self-renewal and differentiation of muscle stem cells, with Hes1 acting as transcriptional pacemaker for the oscillatory network.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-21631-4