Loading…
Numerical Solution of a Nonlinear Integro-Differential Equation
A discretization algorithm for the numerical solution of a nonlinear integrodifferential equation modeling the temporal variation of the mean number density a(t) in the single-species annihilation reaction A + A → 0 is discussed. The proposed solution for the two-dimensional case (where the integral...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A discretization algorithm for the numerical solution of a nonlinear integrodifferential equation modeling the temporal variation of the mean number density a(t) in the single-species annihilation reaction A + A → 0 is discussed. The proposed solution for the two-dimensional case (where the integral entering the equation is divergent) uses regularization and then finite differences for the approximation of the differential operator together with a piecewise linear approximation of a(t) under the integral. The presented numerical results point to basic features of the behavior of the number density function a(t) and suggest further improvement of the proposed algorithm. |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/201610802017 |