Loading…
Numerical Solution of a Nonlinear Integro-Differential Equation
A discretization algorithm for the numerical solution of a nonlinear integrodifferential equation modeling the temporal variation of the mean number density a(t) in the single-species annihilation reaction A + A → 0 is discussed. The proposed solution for the two-dimensional case (where the integral...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c391t-22b3b94b1ed4b928e942adcba5f448af4c8b2c0069dc5209a2352b2944122fee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-22b3b94b1ed4b928e942adcba5f448af4c8b2c0069dc5209a2352b2944122fee3 |
container_end_page | |
container_issue | |
container_start_page | 2017 |
container_title | |
container_volume | 108 |
creator | Buša, Ján Hnatič, Michal Honkonen, Juha Lučivjanský, Tomáš |
description | A discretization algorithm for the numerical solution of a nonlinear integrodifferential equation modeling the temporal variation of the mean number density a(t) in the single-species annihilation reaction A + A → 0 is discussed. The proposed solution for the two-dimensional case (where the integral entering the equation is divergent) uses regularization and then finite differences for the approximation of the differential operator together with a piecewise linear approximation of a(t) under the integral. The presented numerical results point to basic features of the behavior of the number density function a(t) and suggest further improvement of the proposed algorithm. |
doi_str_mv | 10.1051/epjconf/201610802017 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b0abb784bb8f4dc29cf6441f2710ee13</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b0abb784bb8f4dc29cf6441f2710ee13</doaj_id><sourcerecordid>4042807661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-22b3b94b1ed4b928e942adcba5f448af4c8b2c0069dc5209a2352b2944122fee3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGr_gYcFz2uTSfYjJ5FatVDqQQVvIclOSpbtps3uHvz3bm0R5zLD8PDM8BJyy-g9oxmb4762oXVzoCxntKRjLy7IBBilKWXi6_LffE1mXVfTsbiUPMsn5GEz7DB6q5vkPTRD70ObBJfoZBPaxreoY7Jqe9zGkD555zBi2_sRXh4GfYRvyJXTTYezc5-Sz-flx-I1Xb-9rBaP69RyyfoUwHAjhWFYCSOhRClAV9bozAlRaidsacBSmsvKZkClBp6BASkEA3CIfEpWJ28VdK320e90_FZBe_W7CHGrdOy9bVAZqo0pSmFM6URlQVqXjx4HBaOIjI-uu5NrH8NhwK5XdRhiO76vWFHmkHPI8pESJ8rG0HUR3d9VRtUxeXVOXv1Pnv8A5QV3lA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1786263256</pqid></control><display><type>conference_proceeding</type><title>Numerical Solution of a Nonlinear Integro-Differential Equation</title><source>Access via ProQuest (Open Access)</source><source>Free Full-Text Journals in Chemistry</source><creator>Buša, Ján ; Hnatič, Michal ; Honkonen, Juha ; Lučivjanský, Tomáš</creator><contributor>Adam, Gh ; Buša, J. ; Hnatič, M.</contributor><creatorcontrib>Buša, Ján ; Hnatič, Michal ; Honkonen, Juha ; Lučivjanský, Tomáš ; Adam, Gh ; Buša, J. ; Hnatič, M.</creatorcontrib><description>A discretization algorithm for the numerical solution of a nonlinear integrodifferential equation modeling the temporal variation of the mean number density a(t) in the single-species annihilation reaction A + A → 0 is discussed. The proposed solution for the two-dimensional case (where the integral entering the equation is divergent) uses regularization and then finite differences for the approximation of the differential operator together with a piecewise linear approximation of a(t) under the integral. The presented numerical results point to basic features of the behavior of the number density function a(t) and suggest further improvement of the proposed algorithm.</description><identifier>ISSN: 2100-014X</identifier><identifier>ISSN: 2101-6275</identifier><identifier>EISSN: 2100-014X</identifier><identifier>DOI: 10.1051/epjconf/201610802017</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Algorithms ; Approximation ; Density ; Differential equations ; Integrals ; Mathematical analysis ; Mathematical models ; Operators (mathematics) ; Regularization</subject><ispartof>EPJ Web of Conferences, 2016, Vol.108, p.2017</ispartof><rights>2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-22b3b94b1ed4b928e942adcba5f448af4c8b2c0069dc5209a2352b2944122fee3</citedby><cites>FETCH-LOGICAL-c391t-22b3b94b1ed4b928e942adcba5f448af4c8b2c0069dc5209a2352b2944122fee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1786263256?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Adam, Gh</contributor><contributor>Buša, J.</contributor><contributor>Hnatič, M.</contributor><creatorcontrib>Buša, Ján</creatorcontrib><creatorcontrib>Hnatič, Michal</creatorcontrib><creatorcontrib>Honkonen, Juha</creatorcontrib><creatorcontrib>Lučivjanský, Tomáš</creatorcontrib><title>Numerical Solution of a Nonlinear Integro-Differential Equation</title><title>EPJ Web of Conferences</title><description>A discretization algorithm for the numerical solution of a nonlinear integrodifferential equation modeling the temporal variation of the mean number density a(t) in the single-species annihilation reaction A + A → 0 is discussed. The proposed solution for the two-dimensional case (where the integral entering the equation is divergent) uses regularization and then finite differences for the approximation of the differential operator together with a piecewise linear approximation of a(t) under the integral. The presented numerical results point to basic features of the behavior of the number density function a(t) and suggest further improvement of the proposed algorithm.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Density</subject><subject>Differential equations</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Regularization</subject><issn>2100-014X</issn><issn>2101-6275</issn><issn>2100-014X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWGr_gYcFz2uTSfYjJ5FatVDqQQVvIclOSpbtps3uHvz3bm0R5zLD8PDM8BJyy-g9oxmb4762oXVzoCxntKRjLy7IBBilKWXi6_LffE1mXVfTsbiUPMsn5GEz7DB6q5vkPTRD70ObBJfoZBPaxreoY7Jqe9zGkD555zBi2_sRXh4GfYRvyJXTTYezc5-Sz-flx-I1Xb-9rBaP69RyyfoUwHAjhWFYCSOhRClAV9bozAlRaidsacBSmsvKZkClBp6BASkEA3CIfEpWJ28VdK320e90_FZBe_W7CHGrdOy9bVAZqo0pSmFM6URlQVqXjx4HBaOIjI-uu5NrH8NhwK5XdRhiO76vWFHmkHPI8pESJ8rG0HUR3d9VRtUxeXVOXv1Pnv8A5QV3lA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Buša, Ján</creator><creator>Hnatič, Michal</creator><creator>Honkonen, Juha</creator><creator>Lučivjanský, Tomáš</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20160101</creationdate><title>Numerical Solution of a Nonlinear Integro-Differential Equation</title><author>Buša, Ján ; Hnatič, Michal ; Honkonen, Juha ; Lučivjanský, Tomáš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-22b3b94b1ed4b928e942adcba5f448af4c8b2c0069dc5209a2352b2944122fee3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Density</topic><topic>Differential equations</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buša, Ján</creatorcontrib><creatorcontrib>Hnatič, Michal</creatorcontrib><creatorcontrib>Honkonen, Juha</creatorcontrib><creatorcontrib>Lučivjanský, Tomáš</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buša, Ján</au><au>Hnatič, Michal</au><au>Honkonen, Juha</au><au>Lučivjanský, Tomáš</au><au>Adam, Gh</au><au>Buša, J.</au><au>Hnatič, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Numerical Solution of a Nonlinear Integro-Differential Equation</atitle><btitle>EPJ Web of Conferences</btitle><date>2016-01-01</date><risdate>2016</risdate><volume>108</volume><spage>2017</spage><pages>2017-</pages><issn>2100-014X</issn><issn>2101-6275</issn><eissn>2100-014X</eissn><abstract>A discretization algorithm for the numerical solution of a nonlinear integrodifferential equation modeling the temporal variation of the mean number density a(t) in the single-species annihilation reaction A + A → 0 is discussed. The proposed solution for the two-dimensional case (where the integral entering the equation is divergent) uses regularization and then finite differences for the approximation of the differential operator together with a piecewise linear approximation of a(t) under the integral. The presented numerical results point to basic features of the behavior of the number density function a(t) and suggest further improvement of the proposed algorithm.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/epjconf/201610802017</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2100-014X |
ispartof | EPJ Web of Conferences, 2016, Vol.108, p.2017 |
issn | 2100-014X 2101-6275 2100-014X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b0abb784bb8f4dc29cf6441f2710ee13 |
source | Access via ProQuest (Open Access); Free Full-Text Journals in Chemistry |
subjects | Algorithms Approximation Density Differential equations Integrals Mathematical analysis Mathematical models Operators (mathematics) Regularization |
title | Numerical Solution of a Nonlinear Integro-Differential Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Numerical%20Solution%20of%20a%20Nonlinear%20Integro-Differential%20Equation&rft.btitle=EPJ%20Web%20of%20Conferences&rft.au=Bu%C5%A1a,%20J%C3%A1n&rft.date=2016-01-01&rft.volume=108&rft.spage=2017&rft.pages=2017-&rft.issn=2100-014X&rft.eissn=2100-014X&rft_id=info:doi/10.1051/epjconf/201610802017&rft_dat=%3Cproquest_doaj_%3E4042807661%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-22b3b94b1ed4b928e942adcba5f448af4c8b2c0069dc5209a2352b2944122fee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786263256&rft_id=info:pmid/&rfr_iscdi=true |