Loading…

Autonomous Landing of an UAV Using H∞ Based Model Predictive Control

Possibly the most critical phase of an Unmanned Air Vehicle (UAV) flight is landing. To reduce the risk due to pilot error, autonomous landing systems can be used. Environmental disturbances such as wind shear can jeopardize safe landing, therefore a well-adjusted and robust control system is requir...

Full description

Saved in:
Bibliographic Details
Published in:Drones (Basel) 2022-12, Vol.6 (12), p.416
Main Authors: Latif, Zohaib, Shahzad, Amir, Bhatti, Aamer Iqbal, Whidborne, James Ferris, Samar, Raza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Possibly the most critical phase of an Unmanned Air Vehicle (UAV) flight is landing. To reduce the risk due to pilot error, autonomous landing systems can be used. Environmental disturbances such as wind shear can jeopardize safe landing, therefore a well-adjusted and robust control system is required to maintain the performance requirements during landing. The paper proposes a loop-shaping-based Model Predictive Control (MPC) approach for autonomous UAV landings. Instead of conventional MPC plant model augmentation, the input and output weights are designed in the frequency domain to meet the transient and steady-state performance requirements. Then, the H∞ loop shaping design procedure is used to synthesize the state-feedback controller for the shaped plant. This linear state-feedback control law is then used to solve an inverse optimization problem to design the cost function matrices for MPC. The designed MPC inherits the small-signal characteristics of the H∞ controller when constraints are inactive (i.e., perturbation around equilibrium points that keep the system within saturation limits). The H∞ loop shaping synthesis results in an observer plus state feedback structure. This state estimator initializes the MPC problem at each time step. The control law is successfully evaluated in a non-linear simulation environment under moderate and severe wind downburst. It rejects unmeasured disturbances, has good transient performance, provides an excellent stability margin, and enforces input constraints.
ISSN:2504-446X
2504-446X
DOI:10.3390/drones6120416