Loading…
Autonomous Landing of an UAV Using H∞ Based Model Predictive Control
Possibly the most critical phase of an Unmanned Air Vehicle (UAV) flight is landing. To reduce the risk due to pilot error, autonomous landing systems can be used. Environmental disturbances such as wind shear can jeopardize safe landing, therefore a well-adjusted and robust control system is requir...
Saved in:
Published in: | Drones (Basel) 2022-12, Vol.6 (12), p.416 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-7d99e5f051fbcdab08f9ee116eb39ef379b192fbaa5bf9a57cd9d05647d250623 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-7d99e5f051fbcdab08f9ee116eb39ef379b192fbaa5bf9a57cd9d05647d250623 |
container_end_page | |
container_issue | 12 |
container_start_page | 416 |
container_title | Drones (Basel) |
container_volume | 6 |
creator | Latif, Zohaib Shahzad, Amir Bhatti, Aamer Iqbal Whidborne, James Ferris Samar, Raza |
description | Possibly the most critical phase of an Unmanned Air Vehicle (UAV) flight is landing. To reduce the risk due to pilot error, autonomous landing systems can be used. Environmental disturbances such as wind shear can jeopardize safe landing, therefore a well-adjusted and robust control system is required to maintain the performance requirements during landing. The paper proposes a loop-shaping-based Model Predictive Control (MPC) approach for autonomous UAV landings. Instead of conventional MPC plant model augmentation, the input and output weights are designed in the frequency domain to meet the transient and steady-state performance requirements. Then, the H∞ loop shaping design procedure is used to synthesize the state-feedback controller for the shaped plant. This linear state-feedback control law is then used to solve an inverse optimization problem to design the cost function matrices for MPC. The designed MPC inherits the small-signal characteristics of the H∞ controller when constraints are inactive (i.e., perturbation around equilibrium points that keep the system within saturation limits). The H∞ loop shaping synthesis results in an observer plus state feedback structure. This state estimator initializes the MPC problem at each time step. The control law is successfully evaluated in a non-linear simulation environment under moderate and severe wind downburst. It rejects unmeasured disturbances, has good transient performance, provides an excellent stability margin, and enforces input constraints. |
doi_str_mv | 10.3390/drones6120416 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_b0d16ab9b4e14350a268a9606f8c9bd1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b0d16ab9b4e14350a268a9606f8c9bd1</doaj_id><sourcerecordid>2756677911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-7d99e5f051fbcdab08f9ee116eb39ef379b192fbaa5bf9a57cd9d05647d250623</originalsourceid><addsrcrecordid>eNpVkM1KAzEUhYMoWGqX7gOuR29-p1nWYm2hogsr7kIyScqUdlKTGcE38Cl8OJ_E1oro6v5w-O65B6FzApeMKbhyKTY-S0KBE3mEelQALziXz8d_-lM0yHkFAJRyIRXpocmoa2MTN7HLeG4aVzdLHAM2DV6MnvAi7-fp5_sHvjbZO3wXnV_jh-RdXbX1q8fj2LQprs_QSTDr7Ac_tY8Wk5vH8bSY39_OxqN5UTGAtiidUl4EECTYyhkLw6C8J0R6y5QPrFSWKBqsMcIGZURZOeVASF663Q-Ssj6aHbgumpXepnpj0puOptbfi5iW2qS2rtZeW3BEGqss94QzAYbKoVESZBhWyjqyY10cWNsUXzqfW72KXWp29jUthZRlqcheVRxUVYo5Jx9-rxLQ--T1v-TZFxMNdwU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756677911</pqid></control><display><type>article</type><title>Autonomous Landing of an UAV Using H∞ Based Model Predictive Control</title><source>Publicly Available Content (ProQuest)</source><creator>Latif, Zohaib ; Shahzad, Amir ; Bhatti, Aamer Iqbal ; Whidborne, James Ferris ; Samar, Raza</creator><creatorcontrib>Latif, Zohaib ; Shahzad, Amir ; Bhatti, Aamer Iqbal ; Whidborne, James Ferris ; Samar, Raza</creatorcontrib><description>Possibly the most critical phase of an Unmanned Air Vehicle (UAV) flight is landing. To reduce the risk due to pilot error, autonomous landing systems can be used. Environmental disturbances such as wind shear can jeopardize safe landing, therefore a well-adjusted and robust control system is required to maintain the performance requirements during landing. The paper proposes a loop-shaping-based Model Predictive Control (MPC) approach for autonomous UAV landings. Instead of conventional MPC plant model augmentation, the input and output weights are designed in the frequency domain to meet the transient and steady-state performance requirements. Then, the H∞ loop shaping design procedure is used to synthesize the state-feedback controller for the shaped plant. This linear state-feedback control law is then used to solve an inverse optimization problem to design the cost function matrices for MPC. The designed MPC inherits the small-signal characteristics of the H∞ controller when constraints are inactive (i.e., perturbation around equilibrium points that keep the system within saturation limits). The H∞ loop shaping synthesis results in an observer plus state feedback structure. This state estimator initializes the MPC problem at each time step. The control law is successfully evaluated in a non-linear simulation environment under moderate and severe wind downburst. It rejects unmeasured disturbances, has good transient performance, provides an excellent stability margin, and enforces input constraints.</description><identifier>ISSN: 2504-446X</identifier><identifier>EISSN: 2504-446X</identifier><identifier>DOI: 10.3390/drones6120416</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Altitude ; autonomous landing ; Control algorithms ; Control systems ; Control theory ; Controllers ; Cost function ; Design ; Design optimization ; Disturbances ; Feedback control ; Fuzzy logic ; H-infinity control ; Human error ; H∞ synthesis ; Landing aids ; MPC ; Optimization ; Perturbation ; Pilot error ; Predictive control ; Robust control ; Sensors ; State estimation ; State feedback ; State observers ; Transient performance ; UAV ; Unmanned aerial vehicles ; Wind shear</subject><ispartof>Drones (Basel), 2022-12, Vol.6 (12), p.416</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-7d99e5f051fbcdab08f9ee116eb39ef379b192fbaa5bf9a57cd9d05647d250623</citedby><cites>FETCH-LOGICAL-c300t-7d99e5f051fbcdab08f9ee116eb39ef379b192fbaa5bf9a57cd9d05647d250623</cites><orcidid>0000-0002-6310-8946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756677911/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756677911?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Latif, Zohaib</creatorcontrib><creatorcontrib>Shahzad, Amir</creatorcontrib><creatorcontrib>Bhatti, Aamer Iqbal</creatorcontrib><creatorcontrib>Whidborne, James Ferris</creatorcontrib><creatorcontrib>Samar, Raza</creatorcontrib><title>Autonomous Landing of an UAV Using H∞ Based Model Predictive Control</title><title>Drones (Basel)</title><description>Possibly the most critical phase of an Unmanned Air Vehicle (UAV) flight is landing. To reduce the risk due to pilot error, autonomous landing systems can be used. Environmental disturbances such as wind shear can jeopardize safe landing, therefore a well-adjusted and robust control system is required to maintain the performance requirements during landing. The paper proposes a loop-shaping-based Model Predictive Control (MPC) approach for autonomous UAV landings. Instead of conventional MPC plant model augmentation, the input and output weights are designed in the frequency domain to meet the transient and steady-state performance requirements. Then, the H∞ loop shaping design procedure is used to synthesize the state-feedback controller for the shaped plant. This linear state-feedback control law is then used to solve an inverse optimization problem to design the cost function matrices for MPC. The designed MPC inherits the small-signal characteristics of the H∞ controller when constraints are inactive (i.e., perturbation around equilibrium points that keep the system within saturation limits). The H∞ loop shaping synthesis results in an observer plus state feedback structure. This state estimator initializes the MPC problem at each time step. The control law is successfully evaluated in a non-linear simulation environment under moderate and severe wind downburst. It rejects unmeasured disturbances, has good transient performance, provides an excellent stability margin, and enforces input constraints.</description><subject>Altitude</subject><subject>autonomous landing</subject><subject>Control algorithms</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Cost function</subject><subject>Design</subject><subject>Design optimization</subject><subject>Disturbances</subject><subject>Feedback control</subject><subject>Fuzzy logic</subject><subject>H-infinity control</subject><subject>Human error</subject><subject>H∞ synthesis</subject><subject>Landing aids</subject><subject>MPC</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>Pilot error</subject><subject>Predictive control</subject><subject>Robust control</subject><subject>Sensors</subject><subject>State estimation</subject><subject>State feedback</subject><subject>State observers</subject><subject>Transient performance</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><subject>Wind shear</subject><issn>2504-446X</issn><issn>2504-446X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkM1KAzEUhYMoWGqX7gOuR29-p1nWYm2hogsr7kIyScqUdlKTGcE38Cl8OJ_E1oro6v5w-O65B6FzApeMKbhyKTY-S0KBE3mEelQALziXz8d_-lM0yHkFAJRyIRXpocmoa2MTN7HLeG4aVzdLHAM2DV6MnvAi7-fp5_sHvjbZO3wXnV_jh-RdXbX1q8fj2LQprs_QSTDr7Ac_tY8Wk5vH8bSY39_OxqN5UTGAtiidUl4EECTYyhkLw6C8J0R6y5QPrFSWKBqsMcIGZURZOeVASF663Q-Ssj6aHbgumpXepnpj0puOptbfi5iW2qS2rtZeW3BEGqss94QzAYbKoVESZBhWyjqyY10cWNsUXzqfW72KXWp29jUthZRlqcheVRxUVYo5Jx9-rxLQ--T1v-TZFxMNdwU</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Latif, Zohaib</creator><creator>Shahzad, Amir</creator><creator>Bhatti, Aamer Iqbal</creator><creator>Whidborne, James Ferris</creator><creator>Samar, Raza</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6310-8946</orcidid></search><sort><creationdate>20221201</creationdate><title>Autonomous Landing of an UAV Using H∞ Based Model Predictive Control</title><author>Latif, Zohaib ; Shahzad, Amir ; Bhatti, Aamer Iqbal ; Whidborne, James Ferris ; Samar, Raza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-7d99e5f051fbcdab08f9ee116eb39ef379b192fbaa5bf9a57cd9d05647d250623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Altitude</topic><topic>autonomous landing</topic><topic>Control algorithms</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Cost function</topic><topic>Design</topic><topic>Design optimization</topic><topic>Disturbances</topic><topic>Feedback control</topic><topic>Fuzzy logic</topic><topic>H-infinity control</topic><topic>Human error</topic><topic>H∞ synthesis</topic><topic>Landing aids</topic><topic>MPC</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>Pilot error</topic><topic>Predictive control</topic><topic>Robust control</topic><topic>Sensors</topic><topic>State estimation</topic><topic>State feedback</topic><topic>State observers</topic><topic>Transient performance</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><topic>Wind shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latif, Zohaib</creatorcontrib><creatorcontrib>Shahzad, Amir</creatorcontrib><creatorcontrib>Bhatti, Aamer Iqbal</creatorcontrib><creatorcontrib>Whidborne, James Ferris</creatorcontrib><creatorcontrib>Samar, Raza</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Drones (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latif, Zohaib</au><au>Shahzad, Amir</au><au>Bhatti, Aamer Iqbal</au><au>Whidborne, James Ferris</au><au>Samar, Raza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous Landing of an UAV Using H∞ Based Model Predictive Control</atitle><jtitle>Drones (Basel)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>6</volume><issue>12</issue><spage>416</spage><pages>416-</pages><issn>2504-446X</issn><eissn>2504-446X</eissn><abstract>Possibly the most critical phase of an Unmanned Air Vehicle (UAV) flight is landing. To reduce the risk due to pilot error, autonomous landing systems can be used. Environmental disturbances such as wind shear can jeopardize safe landing, therefore a well-adjusted and robust control system is required to maintain the performance requirements during landing. The paper proposes a loop-shaping-based Model Predictive Control (MPC) approach for autonomous UAV landings. Instead of conventional MPC plant model augmentation, the input and output weights are designed in the frequency domain to meet the transient and steady-state performance requirements. Then, the H∞ loop shaping design procedure is used to synthesize the state-feedback controller for the shaped plant. This linear state-feedback control law is then used to solve an inverse optimization problem to design the cost function matrices for MPC. The designed MPC inherits the small-signal characteristics of the H∞ controller when constraints are inactive (i.e., perturbation around equilibrium points that keep the system within saturation limits). The H∞ loop shaping synthesis results in an observer plus state feedback structure. This state estimator initializes the MPC problem at each time step. The control law is successfully evaluated in a non-linear simulation environment under moderate and severe wind downburst. It rejects unmeasured disturbances, has good transient performance, provides an excellent stability margin, and enforces input constraints.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/drones6120416</doi><orcidid>https://orcid.org/0000-0002-6310-8946</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-446X |
ispartof | Drones (Basel), 2022-12, Vol.6 (12), p.416 |
issn | 2504-446X 2504-446X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_b0d16ab9b4e14350a268a9606f8c9bd1 |
source | Publicly Available Content (ProQuest) |
subjects | Altitude autonomous landing Control algorithms Control systems Control theory Controllers Cost function Design Design optimization Disturbances Feedback control Fuzzy logic H-infinity control Human error H∞ synthesis Landing aids MPC Optimization Perturbation Pilot error Predictive control Robust control Sensors State estimation State feedback State observers Transient performance UAV Unmanned aerial vehicles Wind shear |
title | Autonomous Landing of an UAV Using H∞ Based Model Predictive Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20Landing%20of%20an%20UAV%20Using%20H%E2%88%9E%20Based%20Model%20Predictive%20Control&rft.jtitle=Drones%20(Basel)&rft.au=Latif,%20Zohaib&rft.date=2022-12-01&rft.volume=6&rft.issue=12&rft.spage=416&rft.pages=416-&rft.issn=2504-446X&rft.eissn=2504-446X&rft_id=info:doi/10.3390/drones6120416&rft_dat=%3Cproquest_doaj_%3E2756677911%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-7d99e5f051fbcdab08f9ee116eb39ef379b192fbaa5bf9a57cd9d05647d250623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756677911&rft_id=info:pmid/&rfr_iscdi=true |