Loading…
On Super Mean Labeling for Total Graph of Path and Cycle
Let G(V,E) be a graph with the vertex set V and the edge set E, respectively. By a graph G=(V,E) we mean a finite undirected graph with neither loops nor multiple edges. The number of vertices of G is called order of G and it is denoted by p. Let G be a (p,q) graph. A super mean graph on G is an inj...
Saved in:
Published in: | International journal of mathematics and mathematical sciences 2018, Vol.2018 (2018), p.1-5 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let G(V,E) be a graph with the vertex set V and the edge set E, respectively. By a graph G=(V,E) we mean a finite undirected graph with neither loops nor multiple edges. The number of vertices of G is called order of G and it is denoted by p. Let G be a (p,q) graph. A super mean graph on G is an injection f:V→{1,2,3…,p+q} such that, for each edge e=uv in E labeled by f⁎e=fu+f(v)/2, the set fV∪{f⁎e:e∈E} forms 1,2,3,…,p+q. A graph which admits super mean labeling is called super mean graph. The total graph T(G) of G is the graph with the vertex set V∪E and two vertices are adjacent whenever they are either adjacent or incident in G. We have showed that graphs T(Pn) and TCn are super mean, where Pn is a path on n vertices and Cn is a cycle on n vertices. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/2018/9250424 |