Loading…

Machine Learning-Based Fatigue Level Prediction for Exoskeleton-Assisted Trunk Flexion Tasks Using Wearable Sensors

Monitoring physical demands during task execution with exoskeletons can be instrumental in understanding their suitability for industrial tasks. This study aimed at developing a fatigue level prediction model for Back-Support Industrial Exoskeletons (BSIEs) using wearable sensors. Fourteen participa...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2024-06, Vol.14 (11), p.4563
Main Authors: Kuber, Pranav Madhav, Kulkarni, Abhineet Rajendra, Rashedi, Ehsan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monitoring physical demands during task execution with exoskeletons can be instrumental in understanding their suitability for industrial tasks. This study aimed at developing a fatigue level prediction model for Back-Support Industrial Exoskeletons (BSIEs) using wearable sensors. Fourteen participants performed a set of intermittent trunk-flexion task cycles consisting of static, sustained, and dynamic activities, until they reached medium-high fatigue levels, while wearing BSIEs. Three classification algorithms, Support Vector Machine (SVM), Random Forest (RF), and XGBoost (XGB), were implemented to predict perceived fatigue level in the back and leg regions using features from four wearable wireless Electromyography (EMG) sensors with integrated Inertial Measurement Units (IMUs). We examined the best grouping and sensor combinations by comparing prediction performance. The findings showed best performance in binary classification of leg and back fatigue with 95% (2 EMG + IMU sensors) and 82% (single IMU sensor) accuracy, respectively. Tertiary classification for back and leg fatigue level prediction required four sensor setups with both EMG and IMU measures to perform at 79% and 67% accuracy, respectively. The efforts presented in our article demonstrate the feasibility of an accessible fatigue level detection system, which can be beneficial for objective fatigue assessment, design selection, and implementation of BSIEs in real-world scenarios.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14114563