Loading…

Learning-Based Clutter Mitigation with Subspace Projection and Sparse Representation in Holographic Subsurface Radar Imaging

The holographic subsurface radar (HSR) is an effective remote sensing modality for surveying shallowly buried objects with high resolution images in plan-view. However, strong reflections from the rough surface and inhomogeneities obscure the detection of stationary targets response. In this paper,...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-02, Vol.14 (3), p.682
Main Authors: Chen, Cheng, Liu, Tao, Liu, Yu, Yang, Bosong, Su, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The holographic subsurface radar (HSR) is an effective remote sensing modality for surveying shallowly buried objects with high resolution images in plan-view. However, strong reflections from the rough surface and inhomogeneities obscure the detection of stationary targets response. In this paper, a learning-based method is proposed to mitigate the clutter in HSR applications. The proposed method first decomposes the HSR image into raw clutter and target data using an adaptive subspace projection approach. Then, the autoencoder is applied to carry out unsupervised learning to extract the target features and mitigate the clutter. The sparse representation is also combined to further optimize the model and the alternating direction multiplier method (ADMM) is used to solve the optimization problem for precision and efficiency. Experiments using real data were conducted to demonstrate that the proposed method can effectively mitigate the strong clutter with the target preserved. The visual and quantitative results show that the proposed method achieves superior performance on suppressing clutter in HSR images compared with the widely used state-of-the-art clutter mitigation approaches.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14030682