Loading…

Strengthening the Comparison Theorem and Kolmogorov Inequality in the Asymmetric Case

We obtain the strengthened Kolmogorov comparison theorem in asymmetric case.In particular, it gives us the opportunity to obtain the following strengthened Kolmogorov inequality in the asymmetric case:$$\|x^{(k)}_{\pm }\|_{\infty}\le \frac{\|\varphi _{r-k}( \cdot \;;\alpha ,\beta )_\pm \|_{\infty }}...

Full description

Saved in:
Bibliographic Details
Published in:Researches in mathematics (Online) 2022-07, Vol.30 (1), p.30-38
Main Authors: Kofanov, V.A., Sydorovych, K.D.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We obtain the strengthened Kolmogorov comparison theorem in asymmetric case.In particular, it gives us the opportunity to obtain the following strengthened Kolmogorov inequality in the asymmetric case:$$\|x^{(k)}_{\pm }\|_{\infty}\le \frac{\|\varphi _{r-k}( \cdot \;;\alpha ,\beta )_\pm \|_{\infty }}{E_0(\varphi _r( \cdot \;;\alpha ,\beta ))^{1-k/r}_{\infty }}|||x|||^{1-k/r}_{\infty}\|\alpha^{-1}x_+^{(r)}+\beta^{-1}x_-^{(r)}\|_\infty^{k/r}$$for functions $x \in L^r_{\infty }(\mathbb{R})$, where$$|||x|||_\infty:=\frac12 \sup_{\alpha ,\beta}\{ |x(\beta)-x(\alpha)|:x'(t)\neq 0 \;\;\forallt\in (\alpha ,\beta) \}$$$k,r \in \mathbb{N}$, $k 0$, $\varphi_r( \cdot \;;\alpha ,\beta )_r$ is the asymmetric perfect spline of Euler of order $r$ and $E_0(x)_\infty $ is the best uniform approximation of the function $x$ by constants.
ISSN:2664-4991
2664-5009
DOI:10.15421/242204