Loading…

A mouse tissue transcription factor atlas

Transcription factors (TFs) drive various biological processes ranging from embryonic development to carcinogenesis. Here, we employ a recently developed concatenated tandem array of consensus TF response elements (catTFRE) approach to profile the activated TFs in 24 adult and 8 fetal mouse tissues...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2017-04, Vol.8 (1), p.15089-15, Article 15089
Main Authors: Zhou, Quan, Liu, Mingwei, Xia, Xia, Gong, Tongqing, Feng, Jinwen, Liu, Wanlin, Liu, Yang, Zhen, Bei, Wang, Yi, Ding, Chen, Qin, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transcription factors (TFs) drive various biological processes ranging from embryonic development to carcinogenesis. Here, we employ a recently developed concatenated tandem array of consensus TF response elements (catTFRE) approach to profile the activated TFs in 24 adult and 8 fetal mouse tissues on proteome scale. A total of 941 TFs are quantitatively identified, representing over 60% of the TFs in the mouse genome. Using an integrated omics approach, we present a TF network in the major organs of the mouse, allowing data mining and generating knowledge to elucidate the roles of TFs in various biological processes, including tissue type maintenance and determining the general features of a physiological system. This study provides a landscape of TFs in mouse tissues that can be used to elucidate transcriptional regulatory specificity and programming and as a baseline that may facilitate understanding diseases that are regulated by TFs. While we have abundant data for transcription factor (TF) binding sites and TF expression at the mRNA level, our knowledge of TFs at the protein level and their DNA-binding activities is sparser. Here, the authors address this by using the catTFRE approach to profile active TFs in 24 adult and 8 fetal mouse tissues, and presenting the TF networks in major mouse organs.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms15089