Loading…

A Novel Tran_NAS Method for the Identification of Fe- and Mg-Deficient Pear Leaves from N- and P‑Deficient Pear Leaf Data

Trace element deficiency diagnosis plays a critical role in pear cultivation. However, high-quality diagnostic models are challenging to investigate, making it difficult to collect samples. Therefore, this manuscript developed a novel transfer learning method, named Tran_NAS, with a fine-tuning neur...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2022-11, Vol.7 (44), p.39727-39741
Main Authors: Jin, Xiu, Ba, Wenjing, Wang, Lianglong, Zhang, Tong, Zhang, Xiaodan, Li, Shaowen, Rao, Yuan, Liu, Li
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Trace element deficiency diagnosis plays a critical role in pear cultivation. However, high-quality diagnostic models are challenging to investigate, making it difficult to collect samples. Therefore, this manuscript developed a novel transfer learning method, named Tran_NAS, with a fine-tuning neural network that uses a neural architecture search (NAS) to transfer learning from nitrogen (N) and phosphorus (P) to iron (Fe) and magnesium (Mg) to diagnose pear leaf element deficiencies. The best accuracy of the transferred NAS model is 89.12%, which is 11% more than that of the model without the transfer of trace element-deficient samples. Meanwhile, Tran_NAS also has better performance on source datasets after comparing with different proportions of training sets. Finally, this manuscript summarizes the transfer model coincident characteristics, including the methods of batch normalization (BN) and dropout layers, which make the model more generalizable. This manuscript applies a symmetric homogeneous feature-based transfer learning method on NAS that is designed explicitly for near-infrared (NIR) data collected from nutrient-deficient pear leaves. The novel transfer learning method would be more effective for the micro-NIR spectrum of the nondestructive diagnosis.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.2c03596