Loading…
Effect of geometrical factors interactions on design optimization process of a natural gas ejector
Enhancing the ejector entrainment ratio plays an important role in the ejector performance. In this article, a surrogate-based optimization approach along with computational fluid dynamics technique has been employed to optimize the entrainment ratio of a single-phase ejector working with natural ga...
Saved in:
Published in: | Advances in mechanical engineering 2019-09, Vol.11 (9) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Enhancing the ejector entrainment ratio plays an important role in the ejector performance. In this article, a surrogate-based optimization approach along with computational fluid dynamics technique has been employed to optimize the entrainment ratio of a single-phase ejector working with natural gas. Nine ejector geometrical factors have been varied to maximize the ejector entrainment ratio. Validation results of the presented computational fluid dynamics model were in a good agreement with the experimental data from the literature with an average error of 0.6% in the critical mode. Reported results showed that the optimum design achieves entrainment ratio of 19.45% at 12, 2, and 5.2 MPa motive pressure, induced pressure, and discharge pressure, respectively. Moreover, the primary nozzle convergent angle and throat length are insignificant factors. Furthermore, secondary nozzle inclination angle has a minor effect on the entrainment ratio of the optimum design. |
---|---|
ISSN: | 1687-8132 1687-8140 |
DOI: | 10.1177/1687814019880368 |