Loading…

Dataset on the differentiation of THP-1 monocytes to LPS inducible adherent macrophages and their capacity for NO/iNOS signaling

When THP-1 cells are differentiated into adherent macro-phage-like cells, they respond to inflammatory stimuli by changing their phenotypes to an activation state and altering the expression of inflammation-related genes. Nitric oxide (NO) is a diatomic molecule implicating in various pathological c...

Full description

Saved in:
Bibliographic Details
Published in:Data in brief 2021-04, Vol.35, p.106786-106786, Article 106786
Main Authors: Ozleyen, Adem, Yilmaz, Yakup Berkay, Tumer, Tugba Boyunegmez
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When THP-1 cells are differentiated into adherent macro-phage-like cells, they respond to inflammatory stimuli by changing their phenotypes to an activation state and altering the expression of inflammation-related genes. Nitric oxide (NO) is a diatomic molecule implicating in various pathological conditions including tissue damage, ER stress, obesity, and cancer. The sustained inflammatory microenvironment leads to increased NO release through the activation of the inducible nitric oxide synthase (iNOS) gene in macrophages. Here, we provide a dataset on the optimized conditions for the THP-1 differentiation and the induction of NO/iNOS signaling under inflammatory stimulus. The human monocytic cells were differentiated into adherent macrophage-like phenotype by phorbol-12-myristate-13-acetate (PMA) stimulation under optimized conditions. In this study, NO/iNOS signaling capacity and the regulation of other pro-inflammatory genes including TNF-α, IL-1β, and COX-2 in the LPS-induced THP-1 were examined.
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2021.106786