Loading…
Microspheres from light—a sustainable materials platform
Driven by the demand for highly specialized polymeric materials via milder, safer, and sustainable processes, we herein introduce a powerful, purely light driven platform for microsphere synthesis – including facile synthesis by sunlight. Our light-induced step-growth precipitation polymerization pr...
Saved in:
Published in: | Nature communications 2022-09, Vol.13 (1), p.5132-5132, Article 5132 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Driven by the demand for highly specialized polymeric materials via milder, safer, and sustainable processes, we herein introduce a powerful, purely light driven platform for microsphere synthesis – including facile synthesis by sunlight. Our light-induced step-growth precipitation polymerization produces monodisperse particles (0.4–2.4 μm) at ambient temperature without any initiator, surfactant, additive or heating, constituting an unconventional approach compared to the classically thermally driven synthesis of particles. The microspheres are formed via the Diels-Alder cycloaddition of a photoactive monomer (2-methylisophthaldialdehyde, MIA) and a suitable electron deficient dienophile (bismaleimide). The particles are stable in the dry state as well as in solution and their surface can be further functionalized to produce fluorescent particles or alter their hydrophilicity. The simplicity and versatility of our approach introduces a fresh opportunity for particle synthesis, opening access to a yet unknown material class.
Photopolymerization provides a safe and mild fabrication pathway towards polymeric particles but the implementation of photochemistry from solution to dispersed media to produce particles is far from trivial. Here, the authors demonstrate an additive-free step-growth photopolymerization with sunlight, exploiting the photoinduced Diels-Alder to fabricate micrometer sized polymeric particles. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-32429-3 |